人工智能支持的视网膜疾病早期检测:糖尿病视网膜病变及其他疾病的深度学习方法。

IF 1.3 Q2 ENGINEERING, BIOMEDICAL
International Journal of Biomedical Imaging Pub Date : 2025-10-06 eCollection Date: 2025-01-01 DOI:10.1155/ijbi/6154285
Ali Basim Mahdi, Zahraa A Mousa Al-Ibraheemi, Zahraa Fadhil Kadhim, Raffef Jabar Abbrahim, Yaqeen Sameer Dhayool, Ghasaq Mankhey Jabbar, Sajjad A Mohammed
{"title":"人工智能支持的视网膜疾病早期检测:糖尿病视网膜病变及其他疾病的深度学习方法。","authors":"Ali Basim Mahdi, Zahraa A Mousa Al-Ibraheemi, Zahraa Fadhil Kadhim, Raffef Jabar Abbrahim, Yaqeen Sameer Dhayool, Ghasaq Mankhey Jabbar, Sajjad A Mohammed","doi":"10.1155/ijbi/6154285","DOIUrl":null,"url":null,"abstract":"<p><p>Various retinal conditions, such as diabetic macular edema (DME) and choroidal neovascularization (CNV), pose significant risks of visual impairment and vision loss. Early detection through automated and accurate and advanced systems can greatly enhance clinical outcomes for patients as well as for medical staff. This study is aimed at developing a deep learning-based model for the early detection of retinal diseases using OCT images. We utilized a publicly available retinal image dataset comprising images with DME, CNV, drusen, and normal cases. The Inception model was trained and validated using various evaluation metrics. Performance metrics, including accuracy, precision, recall, and <i>F</i>1 score, were calculated. The proposed model achieved an accuracy of 94.2%, with precision, recall, and <i>F</i>1 scores exceeding 92% across all classes. Statistical analysis demonstrated the robustness of the model across folds. Our findings highlight the potential of AI-powered systems in improving early detection of retinal conditions, paving the way for integration into clinical workflows. More efforts are needed to utilize it offline by making it available on ophthalmologist mobile devices to facilitate the diagnosis process and provide better service to patients.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2025 ","pages":"6154285"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517976/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-Powered Early Detection of Retinal Conditions: A Deep Learning Approach for Diabetic Retinopathy and Beyond.\",\"authors\":\"Ali Basim Mahdi, Zahraa A Mousa Al-Ibraheemi, Zahraa Fadhil Kadhim, Raffef Jabar Abbrahim, Yaqeen Sameer Dhayool, Ghasaq Mankhey Jabbar, Sajjad A Mohammed\",\"doi\":\"10.1155/ijbi/6154285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various retinal conditions, such as diabetic macular edema (DME) and choroidal neovascularization (CNV), pose significant risks of visual impairment and vision loss. Early detection through automated and accurate and advanced systems can greatly enhance clinical outcomes for patients as well as for medical staff. This study is aimed at developing a deep learning-based model for the early detection of retinal diseases using OCT images. We utilized a publicly available retinal image dataset comprising images with DME, CNV, drusen, and normal cases. The Inception model was trained and validated using various evaluation metrics. Performance metrics, including accuracy, precision, recall, and <i>F</i>1 score, were calculated. The proposed model achieved an accuracy of 94.2%, with precision, recall, and <i>F</i>1 scores exceeding 92% across all classes. Statistical analysis demonstrated the robustness of the model across folds. Our findings highlight the potential of AI-powered systems in improving early detection of retinal conditions, paving the way for integration into clinical workflows. More efforts are needed to utilize it offline by making it available on ophthalmologist mobile devices to facilitate the diagnosis process and provide better service to patients.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":\"2025 \",\"pages\":\"6154285\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517976/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/ijbi/6154285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbi/6154285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

各种视网膜疾病,如糖尿病性黄斑水肿(DME)和脉络膜新生血管(CNV),造成视力损害和视力丧失的重大风险。通过自动化、准确和先进的系统进行早期检测,可以大大提高患者和医务人员的临床效果。本研究旨在开发一种基于深度学习的模型,用于使用OCT图像早期检测视网膜疾病。我们利用了一个公开可用的视网膜图像数据集,包括DME、CNV、dren和正常病例的图像。先启模型使用各种评估量度进行训练和验证。计算性能指标,包括准确性、精密度、召回率和F1分数。该模型的准确率为94.2%,所有类别的准确率、召回率和F1分数均超过92%。统计分析证明了模型跨褶皱的稳健性。我们的研究结果强调了人工智能系统在改善视网膜疾病早期检测方面的潜力,为整合到临床工作流程铺平了道路。需要更多的努力来利用它,使其在眼科医生的移动设备上可用,以促进诊断过程,并为患者提供更好的服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-Powered Early Detection of Retinal Conditions: A Deep Learning Approach for Diabetic Retinopathy and Beyond.

Various retinal conditions, such as diabetic macular edema (DME) and choroidal neovascularization (CNV), pose significant risks of visual impairment and vision loss. Early detection through automated and accurate and advanced systems can greatly enhance clinical outcomes for patients as well as for medical staff. This study is aimed at developing a deep learning-based model for the early detection of retinal diseases using OCT images. We utilized a publicly available retinal image dataset comprising images with DME, CNV, drusen, and normal cases. The Inception model was trained and validated using various evaluation metrics. Performance metrics, including accuracy, precision, recall, and F1 score, were calculated. The proposed model achieved an accuracy of 94.2%, with precision, recall, and F1 scores exceeding 92% across all classes. Statistical analysis demonstrated the robustness of the model across folds. Our findings highlight the potential of AI-powered systems in improving early detection of retinal conditions, paving the way for integration into clinical workflows. More efforts are needed to utilize it offline by making it available on ophthalmologist mobile devices to facilitate the diagnosis process and provide better service to patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信