人工智能土耳其人生活满意度量表的效度与信度分析。

IF 3 3区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Servet Ati̇k, Nuri Erdemi̇r
{"title":"人工智能土耳其人生活满意度量表的效度与信度分析。","authors":"Servet Ati̇k, Nuri Erdemi̇r","doi":"10.1186/s40359-025-03246-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the validity and reliability of a Turkish Life Satisfaction Scale developed using artificial intelligence (ChatGPT) to explore AI's potential in creating psychometric tools. The scale was tested on three independent samples of Turkish university students: 503 for Exploratory Factor Analysis (EFA), 301 for Confirmatory Factor Analysis (CFA), and 79 for test-retest reliability. EFA identified a unidimensional structure, accounting for 67.50% of the total variance (factor loadings .75-.89). CFA confirmed adequate model-data fit (e.g., χ<sup>2</sup>/sd = 2.63, RMSEA = 0.07). The scale demonstrated high internal consistency (Cronbach's α = .88) and temporal stability (test-retest correlation = .95). Criterion validity was supported by strong positive correlations with established Life Satisfaction (r = .74) and General Well-Being (r = .63) scales. These findings indicate that AI can expedite scale development while yielding robust psychometric instruments. This research underscores the innovative potential of AI-supported psychometric tools in the social sciences and offers valuable insights for future scale development.</p>","PeriodicalId":37867,"journal":{"name":"BMC Psychology","volume":"13 1","pages":"1139"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12522903/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validity and reliability analysis of the Turkish life satisfaction scale developed through artificial intelligence.\",\"authors\":\"Servet Ati̇k, Nuri Erdemi̇r\",\"doi\":\"10.1186/s40359-025-03246-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the validity and reliability of a Turkish Life Satisfaction Scale developed using artificial intelligence (ChatGPT) to explore AI's potential in creating psychometric tools. The scale was tested on three independent samples of Turkish university students: 503 for Exploratory Factor Analysis (EFA), 301 for Confirmatory Factor Analysis (CFA), and 79 for test-retest reliability. EFA identified a unidimensional structure, accounting for 67.50% of the total variance (factor loadings .75-.89). CFA confirmed adequate model-data fit (e.g., χ<sup>2</sup>/sd = 2.63, RMSEA = 0.07). The scale demonstrated high internal consistency (Cronbach's α = .88) and temporal stability (test-retest correlation = .95). Criterion validity was supported by strong positive correlations with established Life Satisfaction (r = .74) and General Well-Being (r = .63) scales. These findings indicate that AI can expedite scale development while yielding robust psychometric instruments. This research underscores the innovative potential of AI-supported psychometric tools in the social sciences and offers valuable insights for future scale development.</p>\",\"PeriodicalId\":37867,\"journal\":{\"name\":\"BMC Psychology\",\"volume\":\"13 1\",\"pages\":\"1139\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12522903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1186/s40359-025-03246-2\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s40359-025-03246-2","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了使用人工智能开发的土耳其生活满意度量表(ChatGPT)的有效性和可靠性,以探索人工智能在创建心理测量工具方面的潜力。量表在三个独立的土耳其大学生样本中进行测试:探索性因子分析(EFA)为503,验证性因子分析(CFA)为301,重测信度为79。EFA确定了一个单维结构,占总方差的67.50%(因子负荷为0.75 - 0.89)。CFA证实模型数据有足够的拟合(例如,χ2/sd = 2.63, RMSEA = 0.07)。量表具有较高的内部一致性(Cronbach’s α =)。88)和时间稳定性(test-retest correlation = .95)。标准效度与已建立的生活满意度(r = 0.74)和总体幸福感(r = 0.63)量表呈正相关。这些发现表明,人工智能可以加速规模的发展,同时产生强大的心理测量工具。这项研究强调了人工智能支持的社会科学心理测量工具的创新潜力,并为未来的规模发展提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Validity and reliability analysis of the Turkish life satisfaction scale developed through artificial intelligence.

Validity and reliability analysis of the Turkish life satisfaction scale developed through artificial intelligence.

Validity and reliability analysis of the Turkish life satisfaction scale developed through artificial intelligence.

This study evaluates the validity and reliability of a Turkish Life Satisfaction Scale developed using artificial intelligence (ChatGPT) to explore AI's potential in creating psychometric tools. The scale was tested on three independent samples of Turkish university students: 503 for Exploratory Factor Analysis (EFA), 301 for Confirmatory Factor Analysis (CFA), and 79 for test-retest reliability. EFA identified a unidimensional structure, accounting for 67.50% of the total variance (factor loadings .75-.89). CFA confirmed adequate model-data fit (e.g., χ2/sd = 2.63, RMSEA = 0.07). The scale demonstrated high internal consistency (Cronbach's α = .88) and temporal stability (test-retest correlation = .95). Criterion validity was supported by strong positive correlations with established Life Satisfaction (r = .74) and General Well-Being (r = .63) scales. These findings indicate that AI can expedite scale development while yielding robust psychometric instruments. This research underscores the innovative potential of AI-supported psychometric tools in the social sciences and offers valuable insights for future scale development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Psychology
BMC Psychology Psychology-Psychology (all)
CiteScore
3.90
自引率
2.80%
发文量
265
审稿时长
24 weeks
期刊介绍: BMC Psychology is an open access, peer-reviewed journal that considers manuscripts on all aspects of psychology, human behavior and the mind, including developmental, clinical, cognitive, experimental, health and social psychology, as well as personality and individual differences. The journal welcomes quantitative and qualitative research methods, including animal studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信