揭示丁酸盐作为帕金森病的治疗。

IF 5.8 2区 医学 Q1 NEUROSCIENCES
António E Abreu, Nuno Empadinhas, Sandra Morais Cardoso
{"title":"揭示丁酸盐作为帕金森病的治疗。","authors":"António E Abreu, Nuno Empadinhas, Sandra Morais Cardoso","doi":"10.1007/s12264-025-01498-x","DOIUrl":null,"url":null,"abstract":"<p><p>Butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, plays crucial roles in maintaining intestinal homeostasis and modulating the gut-brain axis. Dysbiosis and SCFA imbalances are increasingly recognized as contributors to disease pathogenesis. A decrease in butyrate-producing bacteria leads to reduced butyrate levels, which have been linked to increased intestinal permeability, systemic inflammation, and neuroinflammation. Emerging evidence highlights a potential therapeutic role for butyrate in Parkinson's Disease (PD). This review examines butyrate's origins, functions, and mechanisms in the gut, its impact on the gut-brain axis, and its relevance in both \"brain-first\" and \"gut-first\" PD models. We also explore the effects of butyrate supplementation in animal models and human clinical studies, highlighting its promise as a therapeutic agent for PD. The understanding of butyrate as a versatile metabolite may pave the way for innovative strategies to prevent or manage PD, stressing the need for integrated approaches targeting both the nervous and gastrointestinal systems.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Butyrate as a Parkinson's Disease Therapy.\",\"authors\":\"António E Abreu, Nuno Empadinhas, Sandra Morais Cardoso\",\"doi\":\"10.1007/s12264-025-01498-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, plays crucial roles in maintaining intestinal homeostasis and modulating the gut-brain axis. Dysbiosis and SCFA imbalances are increasingly recognized as contributors to disease pathogenesis. A decrease in butyrate-producing bacteria leads to reduced butyrate levels, which have been linked to increased intestinal permeability, systemic inflammation, and neuroinflammation. Emerging evidence highlights a potential therapeutic role for butyrate in Parkinson's Disease (PD). This review examines butyrate's origins, functions, and mechanisms in the gut, its impact on the gut-brain axis, and its relevance in both \\\"brain-first\\\" and \\\"gut-first\\\" PD models. We also explore the effects of butyrate supplementation in animal models and human clinical studies, highlighting its promise as a therapeutic agent for PD. The understanding of butyrate as a versatile metabolite may pave the way for innovative strategies to prevent or manage PD, stressing the need for integrated approaches targeting both the nervous and gastrointestinal systems.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-025-01498-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01498-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

丁酸盐是肠道菌群产生的一种短链脂肪酸(SCFA),在维持肠道内稳态和调节肠脑轴方面起着至关重要的作用。生态失调和SCFA失衡越来越被认为是疾病发病机制的贡献者。产生丁酸的细菌减少导致丁酸水平降低,这与肠道通透性增加、全身性炎症和神经炎症有关。新出现的证据强调了丁酸盐在帕金森病(PD)中的潜在治疗作用。本文综述了丁酸盐在肠道中的起源、功能和机制,对肠-脑轴的影响,以及它在“脑优先”和“肠优先”PD模型中的相关性。我们还在动物模型和人类临床研究中探讨了丁酸盐补充剂的作用,强调了其作为帕金森病治疗剂的前景。了解丁酸盐作为一种多功能代谢物可能为预防或管理PD的创新策略铺平道路,强调需要针对神经和胃肠道系统的综合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling Butyrate as a Parkinson's Disease Therapy.

Butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, plays crucial roles in maintaining intestinal homeostasis and modulating the gut-brain axis. Dysbiosis and SCFA imbalances are increasingly recognized as contributors to disease pathogenesis. A decrease in butyrate-producing bacteria leads to reduced butyrate levels, which have been linked to increased intestinal permeability, systemic inflammation, and neuroinflammation. Emerging evidence highlights a potential therapeutic role for butyrate in Parkinson's Disease (PD). This review examines butyrate's origins, functions, and mechanisms in the gut, its impact on the gut-brain axis, and its relevance in both "brain-first" and "gut-first" PD models. We also explore the effects of butyrate supplementation in animal models and human clinical studies, highlighting its promise as a therapeutic agent for PD. The understanding of butyrate as a versatile metabolite may pave the way for innovative strategies to prevent or manage PD, stressing the need for integrated approaches targeting both the nervous and gastrointestinal systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信