António E Abreu, Nuno Empadinhas, Sandra Morais Cardoso
{"title":"揭示丁酸盐作为帕金森病的治疗。","authors":"António E Abreu, Nuno Empadinhas, Sandra Morais Cardoso","doi":"10.1007/s12264-025-01498-x","DOIUrl":null,"url":null,"abstract":"<p><p>Butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, plays crucial roles in maintaining intestinal homeostasis and modulating the gut-brain axis. Dysbiosis and SCFA imbalances are increasingly recognized as contributors to disease pathogenesis. A decrease in butyrate-producing bacteria leads to reduced butyrate levels, which have been linked to increased intestinal permeability, systemic inflammation, and neuroinflammation. Emerging evidence highlights a potential therapeutic role for butyrate in Parkinson's Disease (PD). This review examines butyrate's origins, functions, and mechanisms in the gut, its impact on the gut-brain axis, and its relevance in both \"brain-first\" and \"gut-first\" PD models. We also explore the effects of butyrate supplementation in animal models and human clinical studies, highlighting its promise as a therapeutic agent for PD. The understanding of butyrate as a versatile metabolite may pave the way for innovative strategies to prevent or manage PD, stressing the need for integrated approaches targeting both the nervous and gastrointestinal systems.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Butyrate as a Parkinson's Disease Therapy.\",\"authors\":\"António E Abreu, Nuno Empadinhas, Sandra Morais Cardoso\",\"doi\":\"10.1007/s12264-025-01498-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, plays crucial roles in maintaining intestinal homeostasis and modulating the gut-brain axis. Dysbiosis and SCFA imbalances are increasingly recognized as contributors to disease pathogenesis. A decrease in butyrate-producing bacteria leads to reduced butyrate levels, which have been linked to increased intestinal permeability, systemic inflammation, and neuroinflammation. Emerging evidence highlights a potential therapeutic role for butyrate in Parkinson's Disease (PD). This review examines butyrate's origins, functions, and mechanisms in the gut, its impact on the gut-brain axis, and its relevance in both \\\"brain-first\\\" and \\\"gut-first\\\" PD models. We also explore the effects of butyrate supplementation in animal models and human clinical studies, highlighting its promise as a therapeutic agent for PD. The understanding of butyrate as a versatile metabolite may pave the way for innovative strategies to prevent or manage PD, stressing the need for integrated approaches targeting both the nervous and gastrointestinal systems.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-025-01498-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01498-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Unveiling Butyrate as a Parkinson's Disease Therapy.
Butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, plays crucial roles in maintaining intestinal homeostasis and modulating the gut-brain axis. Dysbiosis and SCFA imbalances are increasingly recognized as contributors to disease pathogenesis. A decrease in butyrate-producing bacteria leads to reduced butyrate levels, which have been linked to increased intestinal permeability, systemic inflammation, and neuroinflammation. Emerging evidence highlights a potential therapeutic role for butyrate in Parkinson's Disease (PD). This review examines butyrate's origins, functions, and mechanisms in the gut, its impact on the gut-brain axis, and its relevance in both "brain-first" and "gut-first" PD models. We also explore the effects of butyrate supplementation in animal models and human clinical studies, highlighting its promise as a therapeutic agent for PD. The understanding of butyrate as a versatile metabolite may pave the way for innovative strategies to prevent or manage PD, stressing the need for integrated approaches targeting both the nervous and gastrointestinal systems.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.