Qizhao Ma, Xiaowan Wang, Mai Xu, Ziyi Yang, Dian Zhang, Jiamin Chen, Tao Gong, Hang Yang, Yuqing Li
{"title":"葡萄糖基转移酶合成的水不溶性外多糖介导了ClyR对变形链球菌的抗菌活性。","authors":"Qizhao Ma, Xiaowan Wang, Mai Xu, Ziyi Yang, Dian Zhang, Jiamin Chen, Tao Gong, Hang Yang, Yuqing Li","doi":"10.1080/20002297.2025.2566894","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dental caries is a widespread global health issue strongly associated with <i>Streptococcus mutans</i>. Bacteriophage-derived lytic enzymes such as ClyR hold considerable promise as antibacterial potential, but the molecular mechanisms underlying their activity against <i>S. mutans</i> remain unclear.</p><p><strong>Objective: </strong>This study aimed to determine the role of water-insoluble exopolysaccharides (EPS) in mediating the antibacterial activity of ClyR against <i>S. mutans</i>.</p><p><strong>Design: </strong>We compared the antibacterial effects of ClyR on <i>S. mutans</i> UA159 and its Δ<i>gtfB</i> mutant, which is characterized by reduced synthesis of water-insoluble EPS. Biofilm architecture and susceptibility were assessed using scanning electron microscopy, confocal laser scanning microscopy, and biomass quantification. Adsorption assays were conducted to evaluate the interaction between ClyR and water-insoluble EPS.</p><p><strong>Results: </strong>The Δ<i>gtfB</i> mutant exhibited significantly higher resistance to ClyR than <i>S. mutans</i> UA159, with reduced biofilm disruption and bacterial loss after treatment. <i>In vitro</i> assays confirmed that water-insoluble EPS specifically adsorbed ClyR, with binding localized to its catalytic PlyCAC domain.</p><p><strong>Conclusions: </strong>Water-insoluble EPS synthesized by <i>S. mutans</i> glucosyltransferases plays a critical role in modulating bacterial susceptibility to ClyR. These findings reveal a novel mechanism underlying bacteriophage lysin activity and highlight EPS as a potential target for enhancing ClyR efficacy against cariogenic biofilms.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2566894"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517413/pdf/","citationCount":"0","resultStr":"{\"title\":\"<b>Water-insoluble exopolysaccharide synthesized by glucosyltransferases mediates the antibacterial activity of ClyR against</b> <i><b>Streptococcus mutans</b></i>.\",\"authors\":\"Qizhao Ma, Xiaowan Wang, Mai Xu, Ziyi Yang, Dian Zhang, Jiamin Chen, Tao Gong, Hang Yang, Yuqing Li\",\"doi\":\"10.1080/20002297.2025.2566894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dental caries is a widespread global health issue strongly associated with <i>Streptococcus mutans</i>. Bacteriophage-derived lytic enzymes such as ClyR hold considerable promise as antibacterial potential, but the molecular mechanisms underlying their activity against <i>S. mutans</i> remain unclear.</p><p><strong>Objective: </strong>This study aimed to determine the role of water-insoluble exopolysaccharides (EPS) in mediating the antibacterial activity of ClyR against <i>S. mutans</i>.</p><p><strong>Design: </strong>We compared the antibacterial effects of ClyR on <i>S. mutans</i> UA159 and its Δ<i>gtfB</i> mutant, which is characterized by reduced synthesis of water-insoluble EPS. Biofilm architecture and susceptibility were assessed using scanning electron microscopy, confocal laser scanning microscopy, and biomass quantification. Adsorption assays were conducted to evaluate the interaction between ClyR and water-insoluble EPS.</p><p><strong>Results: </strong>The Δ<i>gtfB</i> mutant exhibited significantly higher resistance to ClyR than <i>S. mutans</i> UA159, with reduced biofilm disruption and bacterial loss after treatment. <i>In vitro</i> assays confirmed that water-insoluble EPS specifically adsorbed ClyR, with binding localized to its catalytic PlyCAC domain.</p><p><strong>Conclusions: </strong>Water-insoluble EPS synthesized by <i>S. mutans</i> glucosyltransferases plays a critical role in modulating bacterial susceptibility to ClyR. These findings reveal a novel mechanism underlying bacteriophage lysin activity and highlight EPS as a potential target for enhancing ClyR efficacy against cariogenic biofilms.</p>\",\"PeriodicalId\":16598,\"journal\":{\"name\":\"Journal of Oral Microbiology\",\"volume\":\"17 1\",\"pages\":\"2566894\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517413/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/20002297.2025.2566894\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2025.2566894","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Water-insoluble exopolysaccharide synthesized by glucosyltransferases mediates the antibacterial activity of ClyR againstStreptococcus mutans.
Background: Dental caries is a widespread global health issue strongly associated with Streptococcus mutans. Bacteriophage-derived lytic enzymes such as ClyR hold considerable promise as antibacterial potential, but the molecular mechanisms underlying their activity against S. mutans remain unclear.
Objective: This study aimed to determine the role of water-insoluble exopolysaccharides (EPS) in mediating the antibacterial activity of ClyR against S. mutans.
Design: We compared the antibacterial effects of ClyR on S. mutans UA159 and its ΔgtfB mutant, which is characterized by reduced synthesis of water-insoluble EPS. Biofilm architecture and susceptibility were assessed using scanning electron microscopy, confocal laser scanning microscopy, and biomass quantification. Adsorption assays were conducted to evaluate the interaction between ClyR and water-insoluble EPS.
Results: The ΔgtfB mutant exhibited significantly higher resistance to ClyR than S. mutans UA159, with reduced biofilm disruption and bacterial loss after treatment. In vitro assays confirmed that water-insoluble EPS specifically adsorbed ClyR, with binding localized to its catalytic PlyCAC domain.
Conclusions: Water-insoluble EPS synthesized by S. mutans glucosyltransferases plays a critical role in modulating bacterial susceptibility to ClyR. These findings reveal a novel mechanism underlying bacteriophage lysin activity and highlight EPS as a potential target for enhancing ClyR efficacy against cariogenic biofilms.
期刊介绍:
As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies.
Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics.
Article types: original articles, notes, review articles, mini-reviews and commentaries