{"title":"基于时频特征融合的SSVEP频率识别深度学习网络。","authors":"Yiwei Dai, Zhengkui Chen, Tian-Ao Cao, Hongyou Zhou, Min Fang, Yanyun Dai, Lurong Jiang, Jijun Tong","doi":"10.3389/fnins.2025.1679451","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Steady-state visual evoked potential (SSVEP) has emerged as a pivotal branch in brain-computer interfaces (BCIs) due to its high signal-to-noise ratio (SNR) and elevated information transfer rate (ITR). However, substantial inter-subject variability in electroencephalographic (EEG) signals poses a significant challenge to current SSVEP frequency recognition. In particular, it is difficult to achieve high cross-subject classification accuracy in calibration-free scenarios, and the classification performance heavily depends on extensive calibration data.</p><p><strong>Methods: </strong>To mitigate the reliance on large calibration datasets and enhance cross-subject generalization, we propose SSVEP time-frequency fusion network (SSVEP-TFFNet), an improved deep learning network fusing time-domain and frequency-domain features dynamically. The network comprises two parallel branches: a time-domain branch that ingests raw EEG signals and a frequency-domain branch that processes complex-spectrum features. The two branches extract the time-domain and frequency-domain features, respectively. Subsequently, these features are fused via a dynamic weighting mechanism and input to the classifier. This fusion strategy strengthens the feature expression ability and generalization across different subjects.</p><p><strong>Results: </strong>Cross-subject classification was conducted on publicly available 12-class and 40-class SSVEP datasets. We also compared SSVEP-TFFNet with traditional approaches and principal deep learning methods. Results demonstrate that SSVEP-TFFNet achieves an average classification accuracy of 89.72% on the 12-class dataset, surpassing the best baseline method by 1.83%. SSVEP-TFFNet achieves average classification accuracies of 72.11 and 82.50% (40-class datasets), outperforming the best controlled method by 7.40 and 6.89% separately.</p><p><strong>Discussion: </strong>The performance validates the efficacy of dynamic time-frequency feature fusion and our proposed method provides a new paradigm for calibration-free SSVEP-based BCI systems.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1679451"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515880/pdf/","citationCount":"0","resultStr":"{\"title\":\"A time-frequency feature fusion-based deep learning network for SSVEP frequency recognition.\",\"authors\":\"Yiwei Dai, Zhengkui Chen, Tian-Ao Cao, Hongyou Zhou, Min Fang, Yanyun Dai, Lurong Jiang, Jijun Tong\",\"doi\":\"10.3389/fnins.2025.1679451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Steady-state visual evoked potential (SSVEP) has emerged as a pivotal branch in brain-computer interfaces (BCIs) due to its high signal-to-noise ratio (SNR) and elevated information transfer rate (ITR). However, substantial inter-subject variability in electroencephalographic (EEG) signals poses a significant challenge to current SSVEP frequency recognition. In particular, it is difficult to achieve high cross-subject classification accuracy in calibration-free scenarios, and the classification performance heavily depends on extensive calibration data.</p><p><strong>Methods: </strong>To mitigate the reliance on large calibration datasets and enhance cross-subject generalization, we propose SSVEP time-frequency fusion network (SSVEP-TFFNet), an improved deep learning network fusing time-domain and frequency-domain features dynamically. The network comprises two parallel branches: a time-domain branch that ingests raw EEG signals and a frequency-domain branch that processes complex-spectrum features. The two branches extract the time-domain and frequency-domain features, respectively. Subsequently, these features are fused via a dynamic weighting mechanism and input to the classifier. This fusion strategy strengthens the feature expression ability and generalization across different subjects.</p><p><strong>Results: </strong>Cross-subject classification was conducted on publicly available 12-class and 40-class SSVEP datasets. We also compared SSVEP-TFFNet with traditional approaches and principal deep learning methods. Results demonstrate that SSVEP-TFFNet achieves an average classification accuracy of 89.72% on the 12-class dataset, surpassing the best baseline method by 1.83%. SSVEP-TFFNet achieves average classification accuracies of 72.11 and 82.50% (40-class datasets), outperforming the best controlled method by 7.40 and 6.89% separately.</p><p><strong>Discussion: </strong>The performance validates the efficacy of dynamic time-frequency feature fusion and our proposed method provides a new paradigm for calibration-free SSVEP-based BCI systems.</p>\",\"PeriodicalId\":12639,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"19 \",\"pages\":\"1679451\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515880/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2025.1679451\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1679451","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A time-frequency feature fusion-based deep learning network for SSVEP frequency recognition.
Introduction: Steady-state visual evoked potential (SSVEP) has emerged as a pivotal branch in brain-computer interfaces (BCIs) due to its high signal-to-noise ratio (SNR) and elevated information transfer rate (ITR). However, substantial inter-subject variability in electroencephalographic (EEG) signals poses a significant challenge to current SSVEP frequency recognition. In particular, it is difficult to achieve high cross-subject classification accuracy in calibration-free scenarios, and the classification performance heavily depends on extensive calibration data.
Methods: To mitigate the reliance on large calibration datasets and enhance cross-subject generalization, we propose SSVEP time-frequency fusion network (SSVEP-TFFNet), an improved deep learning network fusing time-domain and frequency-domain features dynamically. The network comprises two parallel branches: a time-domain branch that ingests raw EEG signals and a frequency-domain branch that processes complex-spectrum features. The two branches extract the time-domain and frequency-domain features, respectively. Subsequently, these features are fused via a dynamic weighting mechanism and input to the classifier. This fusion strategy strengthens the feature expression ability and generalization across different subjects.
Results: Cross-subject classification was conducted on publicly available 12-class and 40-class SSVEP datasets. We also compared SSVEP-TFFNet with traditional approaches and principal deep learning methods. Results demonstrate that SSVEP-TFFNet achieves an average classification accuracy of 89.72% on the 12-class dataset, surpassing the best baseline method by 1.83%. SSVEP-TFFNet achieves average classification accuracies of 72.11 and 82.50% (40-class datasets), outperforming the best controlled method by 7.40 and 6.89% separately.
Discussion: The performance validates the efficacy of dynamic time-frequency feature fusion and our proposed method provides a new paradigm for calibration-free SSVEP-based BCI systems.
期刊介绍:
Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.