Julia Bernfeld, Simon Zschieschang, Marline Kirsch, Jordi Morales-Dalmau, Jasper Liedtke, Antonina Lavrentieva
{"title":"养殖肉类的生物工艺工程。","authors":"Julia Bernfeld, Simon Zschieschang, Marline Kirsch, Jordi Morales-Dalmau, Jasper Liedtke, Antonina Lavrentieva","doi":"10.1007/10_2025_292","DOIUrl":null,"url":null,"abstract":"<p><p>Cultivated meat (CM) has emerged as a promising solution to the environmental, ethical, and food security concerns associated with conventional meat production. However, realising its full potential depends on developing robust, scalable, and cost-effective bioprocessing strategies. This chapter explores the entire CM bioprocessing pipeline, from upstream challenges such as the development of robust cell lines, scaling up cell cultures, and evaluating different operating modes like batch, fed-batch, and perfusion to downstream processes such as biomass harvesting, purification, and product structuring. Key considerations include ensuring sterility, monitoring critical process parameters, and supporting effective cell proliferation and differentiation. Economically, the high cost of media and capital expenditures remain a major barrier to scale. Strategies such as media recycling, bulk ingredient sourcing, and in-house production are being explored to reduce costs. Emerging technologies like artificial intelligence, machine learning, and digital twins offer new tools for optimising operations, though adoption is still in early stages. As the industry progresses toward commercialisation, continued innovation in bioprocess engineering, guided by techno-economic modelling, will be crucial to achieving scalable and sustainable meat alternatives.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioprocess Engineering for Cultivated Meat.\",\"authors\":\"Julia Bernfeld, Simon Zschieschang, Marline Kirsch, Jordi Morales-Dalmau, Jasper Liedtke, Antonina Lavrentieva\",\"doi\":\"10.1007/10_2025_292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cultivated meat (CM) has emerged as a promising solution to the environmental, ethical, and food security concerns associated with conventional meat production. However, realising its full potential depends on developing robust, scalable, and cost-effective bioprocessing strategies. This chapter explores the entire CM bioprocessing pipeline, from upstream challenges such as the development of robust cell lines, scaling up cell cultures, and evaluating different operating modes like batch, fed-batch, and perfusion to downstream processes such as biomass harvesting, purification, and product structuring. Key considerations include ensuring sterility, monitoring critical process parameters, and supporting effective cell proliferation and differentiation. Economically, the high cost of media and capital expenditures remain a major barrier to scale. Strategies such as media recycling, bulk ingredient sourcing, and in-house production are being explored to reduce costs. Emerging technologies like artificial intelligence, machine learning, and digital twins offer new tools for optimising operations, though adoption is still in early stages. As the industry progresses toward commercialisation, continued innovation in bioprocess engineering, guided by techno-economic modelling, will be crucial to achieving scalable and sustainable meat alternatives.</p>\",\"PeriodicalId\":7198,\"journal\":{\"name\":\"Advances in biochemical engineering/biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biochemical engineering/biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/10_2025_292\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2025_292","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Cultivated meat (CM) has emerged as a promising solution to the environmental, ethical, and food security concerns associated with conventional meat production. However, realising its full potential depends on developing robust, scalable, and cost-effective bioprocessing strategies. This chapter explores the entire CM bioprocessing pipeline, from upstream challenges such as the development of robust cell lines, scaling up cell cultures, and evaluating different operating modes like batch, fed-batch, and perfusion to downstream processes such as biomass harvesting, purification, and product structuring. Key considerations include ensuring sterility, monitoring critical process parameters, and supporting effective cell proliferation and differentiation. Economically, the high cost of media and capital expenditures remain a major barrier to scale. Strategies such as media recycling, bulk ingredient sourcing, and in-house production are being explored to reduce costs. Emerging technologies like artificial intelligence, machine learning, and digital twins offer new tools for optimising operations, though adoption is still in early stages. As the industry progresses toward commercialisation, continued innovation in bioprocess engineering, guided by techno-economic modelling, will be crucial to achieving scalable and sustainable meat alternatives.
期刊介绍:
Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.