Yibo Suo , Xijing Zhu , Chenglong Bi , Linzheng Ye , Jing Li , Zuoxiu Li , Xiangmeng Li , Quan Cheng
{"title":"可控超声空化的粗糙工程电位井:多尺度实验和模拟揭示的多级气泡捕获-释放机制。","authors":"Yibo Suo , Xijing Zhu , Chenglong Bi , Linzheng Ye , Jing Li , Zuoxiu Li , Xiangmeng Li , Quan Cheng","doi":"10.1016/j.ultsonch.2025.107610","DOIUrl":null,"url":null,"abstract":"<div><div>Controlling cavitation dynamics is essential for optimizing ultrasonic-assisted processing, targeted energy release, and damage mitigation. Here, we propose a structural strategy for tunable cavitation control using roughness-engineered surfaces that generate geometry-induced potential wells. Titanium alloy walls with varying porosity were fabricated via triply periodic minimal surface designs to systematically modulate roughness. High-speed imaging revealed that moderate roughness stabilizes bubble aggregation above the surface, whereas smooth walls fail to retain bubbles and excessive roughness induces perturbation-driven release. Specifically, in the 20 % porosity sample at t = 0.78 ms, multiple larger clusters formed at the center region of the wall, displaying asymmetric shapes and stretched edges, significantly increasing bubble retention time. Molecular dynamics simulations demonstrated that van der Waals–dominated short-range adsorption and localized low-energy zones extend bubble residence time, enabling stable capture. Excessive roughness, however, disrupts potential well uniformity, triggering asymmetric collapse and directed energy release. Integrating experimental and simulation results, we establish a multistage “capture–perturbation–collapse–release” framework for surface-induced cavitation control. This approach could potentially enable targeted cavitation control in ultrasonic cleaning, precision machining, and erosion prevention.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"122 ","pages":"Article 107610"},"PeriodicalIF":9.7000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roughness-engineered potential wells for controllable ultrasonic cavitation: Multistage bubble capture–release mechanism revealed by multiscale experiments and simulations\",\"authors\":\"Yibo Suo , Xijing Zhu , Chenglong Bi , Linzheng Ye , Jing Li , Zuoxiu Li , Xiangmeng Li , Quan Cheng\",\"doi\":\"10.1016/j.ultsonch.2025.107610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Controlling cavitation dynamics is essential for optimizing ultrasonic-assisted processing, targeted energy release, and damage mitigation. Here, we propose a structural strategy for tunable cavitation control using roughness-engineered surfaces that generate geometry-induced potential wells. Titanium alloy walls with varying porosity were fabricated via triply periodic minimal surface designs to systematically modulate roughness. High-speed imaging revealed that moderate roughness stabilizes bubble aggregation above the surface, whereas smooth walls fail to retain bubbles and excessive roughness induces perturbation-driven release. Specifically, in the 20 % porosity sample at t = 0.78 ms, multiple larger clusters formed at the center region of the wall, displaying asymmetric shapes and stretched edges, significantly increasing bubble retention time. Molecular dynamics simulations demonstrated that van der Waals–dominated short-range adsorption and localized low-energy zones extend bubble residence time, enabling stable capture. Excessive roughness, however, disrupts potential well uniformity, triggering asymmetric collapse and directed energy release. Integrating experimental and simulation results, we establish a multistage “capture–perturbation–collapse–release” framework for surface-induced cavitation control. This approach could potentially enable targeted cavitation control in ultrasonic cleaning, precision machining, and erosion prevention.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"122 \",\"pages\":\"Article 107610\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135041772500389X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135041772500389X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Roughness-engineered potential wells for controllable ultrasonic cavitation: Multistage bubble capture–release mechanism revealed by multiscale experiments and simulations
Controlling cavitation dynamics is essential for optimizing ultrasonic-assisted processing, targeted energy release, and damage mitigation. Here, we propose a structural strategy for tunable cavitation control using roughness-engineered surfaces that generate geometry-induced potential wells. Titanium alloy walls with varying porosity were fabricated via triply periodic minimal surface designs to systematically modulate roughness. High-speed imaging revealed that moderate roughness stabilizes bubble aggregation above the surface, whereas smooth walls fail to retain bubbles and excessive roughness induces perturbation-driven release. Specifically, in the 20 % porosity sample at t = 0.78 ms, multiple larger clusters formed at the center region of the wall, displaying asymmetric shapes and stretched edges, significantly increasing bubble retention time. Molecular dynamics simulations demonstrated that van der Waals–dominated short-range adsorption and localized low-energy zones extend bubble residence time, enabling stable capture. Excessive roughness, however, disrupts potential well uniformity, triggering asymmetric collapse and directed energy release. Integrating experimental and simulation results, we establish a multistage “capture–perturbation–collapse–release” framework for surface-induced cavitation control. This approach could potentially enable targeted cavitation control in ultrasonic cleaning, precision machining, and erosion prevention.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.