具有增强锂金属电池室温离子电导率的高性能聚环氧乙烷基复合固体电解质。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-14 DOI:10.1002/cssc.202500794
Guoxu Wang, Qinghua Liu, Shang-Sen Chi, Qiujun Wang
{"title":"具有增强锂金属电池室温离子电导率的高性能聚环氧乙烷基复合固体电解质。","authors":"Guoxu Wang, Qinghua Liu, Shang-Sen Chi, Qiujun Wang","doi":"10.1002/cssc.202500794","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(ethylene oxide) (PEO)-based solid-state polymer electrolytes have emerged as one of the most promising candidates for high-energy-density lithium-metal batteries in energy storage applications. However, their notably low ionic conductivity has significantly hindered PEO-based polymer electrolytes' practical application and development, particularly at room temperature (RT). To address the critical challenge of low RT ionic conductivity in PEO-based solid-state electrolytes, this study develops a composite solid electrolyte (CSE) synergistically reinforced by high-concentration lithium salts and Al<sub>2</sub>O<sub>3</sub> filler. The \"polymer-in-salt\" strategy disrupts PEO crystallinity via concentrated Li salt to form continuous ion channels, while Al<sub>2</sub>O<sub>3</sub> further suppresses crystallization and bridges ionic cluster transport. This dual optimization achieves an ultrahigh ionic conductivity of 9.62 × 10<sup>-4</sup> S cm<sup>-1</sup> and a 4.8 V electrochemical stability window at RT. The Li symmetric cell exhibits stable cycling for 1000 h at 1 mA cm<sup>-2</sup>/1 mAh cm<sup>-2</sup>, and the all-solid-state Li//LiFePO<sub>4</sub> coin cell retains 70.7% capacity after 300 cycles at 0.1C. Moreover, Li//LiFePO<sub>4</sub> pouch cell maintains 96.4% capacity over 100 cycles at RT. This work establishes a new paradigm for material design and performance enhancement in practical solid-state lithium batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500794"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Poly(ethylene Oxide)-Based Composite Solid Electrolyte with Enhanced Room-Temperature Ionic Conductivity for Lithium-Metal Batteries.\",\"authors\":\"Guoxu Wang, Qinghua Liu, Shang-Sen Chi, Qiujun Wang\",\"doi\":\"10.1002/cssc.202500794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(ethylene oxide) (PEO)-based solid-state polymer electrolytes have emerged as one of the most promising candidates for high-energy-density lithium-metal batteries in energy storage applications. However, their notably low ionic conductivity has significantly hindered PEO-based polymer electrolytes' practical application and development, particularly at room temperature (RT). To address the critical challenge of low RT ionic conductivity in PEO-based solid-state electrolytes, this study develops a composite solid electrolyte (CSE) synergistically reinforced by high-concentration lithium salts and Al<sub>2</sub>O<sub>3</sub> filler. The \\\"polymer-in-salt\\\" strategy disrupts PEO crystallinity via concentrated Li salt to form continuous ion channels, while Al<sub>2</sub>O<sub>3</sub> further suppresses crystallization and bridges ionic cluster transport. This dual optimization achieves an ultrahigh ionic conductivity of 9.62 × 10<sup>-4</sup> S cm<sup>-1</sup> and a 4.8 V electrochemical stability window at RT. The Li symmetric cell exhibits stable cycling for 1000 h at 1 mA cm<sup>-2</sup>/1 mAh cm<sup>-2</sup>, and the all-solid-state Li//LiFePO<sub>4</sub> coin cell retains 70.7% capacity after 300 cycles at 0.1C. Moreover, Li//LiFePO<sub>4</sub> pouch cell maintains 96.4% capacity over 100 cycles at RT. This work establishes a new paradigm for material design and performance enhancement in practical solid-state lithium batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500794\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500794\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500794","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚环氧乙烷(PEO)基固态聚合物电解质已成为高能量密度锂金属电池储能应用中最有前途的候选材料之一。然而,它们明显较低的离子电导率极大地阻碍了peo基聚合物电解质的实际应用和发展,特别是在室温(RT)下。为了解决peo基固态电解质中低RT离子电导率的关键挑战,本研究开发了一种由高浓度锂盐和Al2O3填料协同增强的复合固体电解质(CSE)。“盐中聚合物”策略通过浓缩的Li盐破坏PEO的结晶度,形成连续的离子通道,而Al2O3进一步抑制结晶并架起离子团簇传输的桥梁。这种双重优化获得了9.62 × 10-4 S cm-1的超高离子电导率和4.8 V的电化学稳定窗口。锂对称电池在1 mA cm-2/1 mAh cm-2下稳定循环1000 h,而全固态锂//LiFePO4硬币电池在0.1C下循环300次后仍保持70.7%的容量。此外,Li//LiFePO4袋状电池在100次循环中保持96.4%的容量。这项工作为实用固态锂电池的材料设计和性能增强建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance Poly(ethylene Oxide)-Based Composite Solid Electrolyte with Enhanced Room-Temperature Ionic Conductivity for Lithium-Metal Batteries.

Poly(ethylene oxide) (PEO)-based solid-state polymer electrolytes have emerged as one of the most promising candidates for high-energy-density lithium-metal batteries in energy storage applications. However, their notably low ionic conductivity has significantly hindered PEO-based polymer electrolytes' practical application and development, particularly at room temperature (RT). To address the critical challenge of low RT ionic conductivity in PEO-based solid-state electrolytes, this study develops a composite solid electrolyte (CSE) synergistically reinforced by high-concentration lithium salts and Al2O3 filler. The "polymer-in-salt" strategy disrupts PEO crystallinity via concentrated Li salt to form continuous ion channels, while Al2O3 further suppresses crystallization and bridges ionic cluster transport. This dual optimization achieves an ultrahigh ionic conductivity of 9.62 × 10-4 S cm-1 and a 4.8 V electrochemical stability window at RT. The Li symmetric cell exhibits stable cycling for 1000 h at 1 mA cm-2/1 mAh cm-2, and the all-solid-state Li//LiFePO4 coin cell retains 70.7% capacity after 300 cycles at 0.1C. Moreover, Li//LiFePO4 pouch cell maintains 96.4% capacity over 100 cycles at RT. This work establishes a new paradigm for material design and performance enhancement in practical solid-state lithium batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信