协同高熵和磁自旋工程在FeCoNiCrMo氧化物纳米纤维中的高效水分解。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jin-Hua Liu, Yuze Sun, Zhihan Gao, Wen-Hua Yang, Lingyun Li, Zheng Wei, Wenpeng Han, Ru Li, Jun Zhang, Yun-Ze Long
{"title":"协同高熵和磁自旋工程在FeCoNiCrMo氧化物纳米纤维中的高效水分解。","authors":"Jin-Hua Liu, Yuze Sun, Zhihan Gao, Wen-Hua Yang, Lingyun Li, Zheng Wei, Wenpeng Han, Ru Li, Jun Zhang, Yun-Ze Long","doi":"10.1002/smtd.202501108","DOIUrl":null,"url":null,"abstract":"<p><p>High-entropy spinel oxides (HEOs) offer a promising route to overcome the kinetic bottleneck of the oxygen evolution reaction (OER) through synergistic multi‑metal interactions, lattice distortion, and tailored electronic structures. Here, the fabrication of a quinary FeCoNiCrMo spinel oxide nanofiber via electrospinning and controlled calcination is reported. Incorporation of Mo serves to modulate the local crystal field and electronic spin states, while application of an external magnetic field enhances spin polarization of reaction intermediates, lowering the energy barrier for triplet O<sub>2</sub> formation. The optimized HEO exhibits an overpotential of 240 mV at 10 mA cm<sup>-</sup> <sup>2</sup> and a Tafel slope of 45 mV·dec<sup>-1</sup> under a 400 mT magnetic field, outperforming most reported high‑entropy catalysts. Density functional theory (DFT) and in situ Raman spectroscopy reveal that magnetic-field-assisted spin filtering accelerates O─O bond formation via a spin‑aligned dual‑site mechanism. Assembling HEO with Pt/C in a two‑electrode electrolyzer achieves overall water splitting at 10 mA·cm<sup>-2</sup> with a cell voltage of 1.565 V and near 100% Faradaic efficiency. This work demonstrates the powerful synergy of high‑entropy design and magnetic spin control, offering a fresh strategy for high‑performance water‑splitting electrocatalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01108"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic High-Entropy and Magnetic Spin Engineering in FeCoNiCrMo Oxide Nanofibers for Efficient Water Splitting.\",\"authors\":\"Jin-Hua Liu, Yuze Sun, Zhihan Gao, Wen-Hua Yang, Lingyun Li, Zheng Wei, Wenpeng Han, Ru Li, Jun Zhang, Yun-Ze Long\",\"doi\":\"10.1002/smtd.202501108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-entropy spinel oxides (HEOs) offer a promising route to overcome the kinetic bottleneck of the oxygen evolution reaction (OER) through synergistic multi‑metal interactions, lattice distortion, and tailored electronic structures. Here, the fabrication of a quinary FeCoNiCrMo spinel oxide nanofiber via electrospinning and controlled calcination is reported. Incorporation of Mo serves to modulate the local crystal field and electronic spin states, while application of an external magnetic field enhances spin polarization of reaction intermediates, lowering the energy barrier for triplet O<sub>2</sub> formation. The optimized HEO exhibits an overpotential of 240 mV at 10 mA cm<sup>-</sup> <sup>2</sup> and a Tafel slope of 45 mV·dec<sup>-1</sup> under a 400 mT magnetic field, outperforming most reported high‑entropy catalysts. Density functional theory (DFT) and in situ Raman spectroscopy reveal that magnetic-field-assisted spin filtering accelerates O─O bond formation via a spin‑aligned dual‑site mechanism. Assembling HEO with Pt/C in a two‑electrode electrolyzer achieves overall water splitting at 10 mA·cm<sup>-2</sup> with a cell voltage of 1.565 V and near 100% Faradaic efficiency. This work demonstrates the powerful synergy of high‑entropy design and magnetic spin control, offering a fresh strategy for high‑performance water‑splitting electrocatalysts.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01108\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501108\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501108","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵尖晶石氧化物(HEOs)通过协同多金属相互作用、晶格畸变和定制电子结构,为克服析氧反应(OER)的动力学瓶颈提供了一条有希望的途径。本文报道了采用静电纺丝和可控煅烧法制备了一种五价FeCoNiCrMo尖晶石氧化物纳米纤维。Mo的加入有助于调制局部晶体场和电子自旋态,而外磁场的应用增强了反应中间体的自旋极化,降低了三重态O2形成的能垒。优化后的HEO在10 mA cm- 2下的过电位为240 mV,在400 mT磁场下的Tafel斜率为45 mV·dec1,优于目前报道的大多数高熵催化剂。密度泛函理论(DFT)和原位拉曼光谱揭示了磁场辅助自旋滤波通过自旋对准双位机制加速O─O键的形成。将HEO与Pt/C组装在双电极电解槽中,可实现10 mA·cm-2的整体水分解,电池电压为1.565 V,法拉第效率接近100%。这项工作证明了高熵设计和磁自旋控制的强大协同作用,为高性能水分解电催化剂提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic High-Entropy and Magnetic Spin Engineering in FeCoNiCrMo Oxide Nanofibers for Efficient Water Splitting.

High-entropy spinel oxides (HEOs) offer a promising route to overcome the kinetic bottleneck of the oxygen evolution reaction (OER) through synergistic multi‑metal interactions, lattice distortion, and tailored electronic structures. Here, the fabrication of a quinary FeCoNiCrMo spinel oxide nanofiber via electrospinning and controlled calcination is reported. Incorporation of Mo serves to modulate the local crystal field and electronic spin states, while application of an external magnetic field enhances spin polarization of reaction intermediates, lowering the energy barrier for triplet O2 formation. The optimized HEO exhibits an overpotential of 240 mV at 10 mA cm- 2 and a Tafel slope of 45 mV·dec-1 under a 400 mT magnetic field, outperforming most reported high‑entropy catalysts. Density functional theory (DFT) and in situ Raman spectroscopy reveal that magnetic-field-assisted spin filtering accelerates O─O bond formation via a spin‑aligned dual‑site mechanism. Assembling HEO with Pt/C in a two‑electrode electrolyzer achieves overall water splitting at 10 mA·cm-2 with a cell voltage of 1.565 V and near 100% Faradaic efficiency. This work demonstrates the powerful synergy of high‑entropy design and magnetic spin control, offering a fresh strategy for high‑performance water‑splitting electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信