利用三维分子空间视觉信息和多视角表示进行药物发现。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zimai Zhang, Xi Zhou, Yujie Qi, Xiaobo Zhu, Xun Deng, Feng Tan, Yuan Huang, Lun Hu, Zhuhong You, Pengwei Hu
{"title":"利用三维分子空间视觉信息和多视角表示进行药物发现。","authors":"Zimai Zhang, Xi Zhou, Yujie Qi, Xiaobo Zhu, Xun Deng, Feng Tan, Yuan Huang, Lun Hu, Zhuhong You, Pengwei Hu","doi":"10.1002/advs.202512453","DOIUrl":null,"url":null,"abstract":"<p><p>Drug discovery remains a costly and time-intensive process, where accurate identification of drug associations is critical for therapeutic development. Existing computational approaches predominantly rely on sequence-derived or 2D molecular representations, often overlooking the intrinsic 3D complexity of small molecules. Here, a deep learning framework is presented that directly learns from 3D molecular spatial visual information, capturing geometric, topological, and stereochemical features from spatial renderings. By integrating this spatial information with traditional molecular descriptors, unified multi-perspective representations are constructed that better reflect molecular structure and function. Across benchmark tasks involving drug-microRNA, drug-drug, and drug-protein interaction prediction, this model consistently outperforms conventional fingerprint-based baselines. Interpretability analyses show that the model attends to biologically relevant substructures, highlighting the value of 3D molecular spatial visual information in molecular recognition. These findings demonstrate the potential of spatially informed learning to enhance predictive performance and provide mechanistic insights in computational drug discovery.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e12453"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging 3D Molecular Spatial Visual Information and Multi-Perspective Representations for Drug Discovery.\",\"authors\":\"Zimai Zhang, Xi Zhou, Yujie Qi, Xiaobo Zhu, Xun Deng, Feng Tan, Yuan Huang, Lun Hu, Zhuhong You, Pengwei Hu\",\"doi\":\"10.1002/advs.202512453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug discovery remains a costly and time-intensive process, where accurate identification of drug associations is critical for therapeutic development. Existing computational approaches predominantly rely on sequence-derived or 2D molecular representations, often overlooking the intrinsic 3D complexity of small molecules. Here, a deep learning framework is presented that directly learns from 3D molecular spatial visual information, capturing geometric, topological, and stereochemical features from spatial renderings. By integrating this spatial information with traditional molecular descriptors, unified multi-perspective representations are constructed that better reflect molecular structure and function. Across benchmark tasks involving drug-microRNA, drug-drug, and drug-protein interaction prediction, this model consistently outperforms conventional fingerprint-based baselines. Interpretability analyses show that the model attends to biologically relevant substructures, highlighting the value of 3D molecular spatial visual information in molecular recognition. These findings demonstrate the potential of spatially informed learning to enhance predictive performance and provide mechanistic insights in computational drug discovery.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e12453\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202512453\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202512453","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

药物发现仍然是一个昂贵和耗时的过程,其中药物关联的准确鉴定对治疗发展至关重要。现有的计算方法主要依赖于序列衍生或二维分子表示,往往忽略了小分子固有的三维复杂性。在这里,提出了一个深度学习框架,直接从3D分子空间视觉信息中学习,从空间渲染中捕获几何、拓扑和立体化学特征。通过将这些空间信息与传统的分子描述符相结合,构建了统一的多视角表征,更好地反映了分子的结构和功能。在涉及药物- microrna、药物-药物和药物-蛋白质相互作用预测的基准任务中,该模型始终优于传统的基于指纹的基线。可解释性分析表明,该模型关注生物相关的亚结构,突出了三维分子空间视觉信息在分子识别中的价值。这些发现证明了空间信息学习在提高预测性能和为计算药物发现提供机制见解方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging 3D Molecular Spatial Visual Information and Multi-Perspective Representations for Drug Discovery.

Drug discovery remains a costly and time-intensive process, where accurate identification of drug associations is critical for therapeutic development. Existing computational approaches predominantly rely on sequence-derived or 2D molecular representations, often overlooking the intrinsic 3D complexity of small molecules. Here, a deep learning framework is presented that directly learns from 3D molecular spatial visual information, capturing geometric, topological, and stereochemical features from spatial renderings. By integrating this spatial information with traditional molecular descriptors, unified multi-perspective representations are constructed that better reflect molecular structure and function. Across benchmark tasks involving drug-microRNA, drug-drug, and drug-protein interaction prediction, this model consistently outperforms conventional fingerprint-based baselines. Interpretability analyses show that the model attends to biologically relevant substructures, highlighting the value of 3D molecular spatial visual information in molecular recognition. These findings demonstrate the potential of spatially informed learning to enhance predictive performance and provide mechanistic insights in computational drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信