负载非贵金属的纳米花球光催化析氢高效抗光腐蚀。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-15 DOI:10.1002/cssc.202501761
Bolin Yang, Fei Jin, Zhiliang Jin, Noritatsu Tsubaki
{"title":"负载非贵金属的纳米花球光催化析氢高效抗光腐蚀。","authors":"Bolin Yang, Fei Jin, Zhiliang Jin, Noritatsu Tsubaki","doi":"10.1002/cssc.202501761","DOIUrl":null,"url":null,"abstract":"<p><p>The production of hydrogen via solar driven photocatalytic water splitting represents a promising pathway to green energy. In this study, the promising bimetallic sulfide Zn<sub>2</sub>In<sub>2</sub>S<sub>5</sub> is chosen to break through its inherent performance limitations. Loading the cocatalyst NiMoS<sub>4</sub> encapsulated by nanoflower spheres of Zn<sub>2</sub>In<sub>2</sub>S<sub>5</sub> has the property of significantly inhibiting photocorrosion. The hydrogen evolution rate of the NiMoS<sub>4</sub>/ Zn<sub>2</sub>In<sub>2</sub>S<sub>5</sub> composite under simulated sunlight is 5.64 mmol g<sup>-1</sup> h<sup>-1</sup>, which is three times higher than that of the main catalyst Zn<sub>2</sub>In<sub>2</sub>S<sub>5</sub>. It is derived from physical phase analytical characterization, photoelectrochemical characterization and density functional theory computational simulation, confirming that the introduction of the NiMoS<sub>4</sub> cocatalyst is a key factor in enhancing the efficiency of the hydrogen evolution reaction by promoting the electron enrichment effect and increasing the catalytically active sites. It is aimed to synergistically enhance the photogenerated carrier separation efficiency and facilitate the conversion of solar energy into chemical energy, providing inspiration for developing efficient and stable photocatalyst systems.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501761"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoflower Balls Loaded with Nonprecious Metals Efficient Resist Photocorrosion for Photocatalytic Hydrogen Evolution.\",\"authors\":\"Bolin Yang, Fei Jin, Zhiliang Jin, Noritatsu Tsubaki\",\"doi\":\"10.1002/cssc.202501761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The production of hydrogen via solar driven photocatalytic water splitting represents a promising pathway to green energy. In this study, the promising bimetallic sulfide Zn<sub>2</sub>In<sub>2</sub>S<sub>5</sub> is chosen to break through its inherent performance limitations. Loading the cocatalyst NiMoS<sub>4</sub> encapsulated by nanoflower spheres of Zn<sub>2</sub>In<sub>2</sub>S<sub>5</sub> has the property of significantly inhibiting photocorrosion. The hydrogen evolution rate of the NiMoS<sub>4</sub>/ Zn<sub>2</sub>In<sub>2</sub>S<sub>5</sub> composite under simulated sunlight is 5.64 mmol g<sup>-1</sup> h<sup>-1</sup>, which is three times higher than that of the main catalyst Zn<sub>2</sub>In<sub>2</sub>S<sub>5</sub>. It is derived from physical phase analytical characterization, photoelectrochemical characterization and density functional theory computational simulation, confirming that the introduction of the NiMoS<sub>4</sub> cocatalyst is a key factor in enhancing the efficiency of the hydrogen evolution reaction by promoting the electron enrichment effect and increasing the catalytically active sites. It is aimed to synergistically enhance the photogenerated carrier separation efficiency and facilitate the conversion of solar energy into chemical energy, providing inspiration for developing efficient and stable photocatalyst systems.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501761\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501761\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501761","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过太阳能驱动的光催化水分解生产氢代表了一条有前途的绿色能源途径。在本研究中,选择了有前途的双金属硫化物Zn2In2S5来突破其固有的性能限制。负载由Zn2In2S5纳米花球封装的助催化剂NiMoS4具有明显的抑制光腐蚀的性能。模拟阳光下NiMoS4/ Zn2In2S5复合材料的析氢速率为5.64 mmol g-1 h-1,是主催化剂Zn2In2S5的3倍。通过物理相分析表征、光电化学表征和密度泛函理论计算模拟,证实了NiMoS4助催化剂的引入是通过促进电子富集效应和增加催化活性位点来提高析氢反应效率的关键因素。旨在协同提高光生载流子分离效率,促进太阳能向化学能的转化,为开发高效稳定的光催化剂体系提供灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoflower Balls Loaded with Nonprecious Metals Efficient Resist Photocorrosion for Photocatalytic Hydrogen Evolution.

The production of hydrogen via solar driven photocatalytic water splitting represents a promising pathway to green energy. In this study, the promising bimetallic sulfide Zn2In2S5 is chosen to break through its inherent performance limitations. Loading the cocatalyst NiMoS4 encapsulated by nanoflower spheres of Zn2In2S5 has the property of significantly inhibiting photocorrosion. The hydrogen evolution rate of the NiMoS4/ Zn2In2S5 composite under simulated sunlight is 5.64 mmol g-1 h-1, which is three times higher than that of the main catalyst Zn2In2S5. It is derived from physical phase analytical characterization, photoelectrochemical characterization and density functional theory computational simulation, confirming that the introduction of the NiMoS4 cocatalyst is a key factor in enhancing the efficiency of the hydrogen evolution reaction by promoting the electron enrichment effect and increasing the catalytically active sites. It is aimed to synergistically enhance the photogenerated carrier separation efficiency and facilitate the conversion of solar energy into chemical energy, providing inspiration for developing efficient and stable photocatalyst systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信