{"title":"乙二醇和海藻糖在微流控制备下对载细胞水凝胶微球的低温保存。","authors":"Jiangnan Yu, Pengfei Pan, Xiaoli Li, Jin Zhang, Xintian Dingzhang, Xia Jiang, Xiaowen Wang, Jollibekov Berdiyar, Qilong Wang, Ximing Xu, Xia Cao","doi":"10.1021/acs.biomac.5c00559","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-laden hydrogel microspheres have gained significant attention in 3D cell culture applications, yet effective cryopreservation methods for these systems remain underexplored. This study developed a microfluidic platform for fabricating monodisperse, cell-laden microspheres and investigated a dimethyl sulfoxide (DMSO)- and fetal bovine serum (FBS)-free cryopreservation approach. The platform enabled rapid production of gelatin methacryloyl (GelMA) and calcium alginate (ALG) microspheres, demonstrating cell viability exceeding 80% for U251 cells in GelMA microspheres and 90% for both U251 cells and induced pluripotent stem cells (iPSCs) in ALG microspheres. A DMSO-/FBS-free cryoprotectant (12% ethylene glycol, 4% trehalose; E/T) was identified that maintained >90% post-thaw viability in GES, U251, HepG2, A549, and 3T6 cells, with iPSCs retaining >80% viability. Crucially, E/T effectively preserved iPSC-laden microspheres while preventing DMSO-induced apoptosis and preserving pluripotency. This work establishes a systematic protocol for cryopreserving cell-laden hydrogel microspheres without DMSO/FBS, providing a clinically translatable strategy to advance 3D cell culture technologies.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethylene Glycol and Trehalose Cryopreservation of Cell-Laden Hydrogel Microspheres Enabled by Microfluidic Fabrication.\",\"authors\":\"Jiangnan Yu, Pengfei Pan, Xiaoli Li, Jin Zhang, Xintian Dingzhang, Xia Jiang, Xiaowen Wang, Jollibekov Berdiyar, Qilong Wang, Ximing Xu, Xia Cao\",\"doi\":\"10.1021/acs.biomac.5c00559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-laden hydrogel microspheres have gained significant attention in 3D cell culture applications, yet effective cryopreservation methods for these systems remain underexplored. This study developed a microfluidic platform for fabricating monodisperse, cell-laden microspheres and investigated a dimethyl sulfoxide (DMSO)- and fetal bovine serum (FBS)-free cryopreservation approach. The platform enabled rapid production of gelatin methacryloyl (GelMA) and calcium alginate (ALG) microspheres, demonstrating cell viability exceeding 80% for U251 cells in GelMA microspheres and 90% for both U251 cells and induced pluripotent stem cells (iPSCs) in ALG microspheres. A DMSO-/FBS-free cryoprotectant (12% ethylene glycol, 4% trehalose; E/T) was identified that maintained >90% post-thaw viability in GES, U251, HepG2, A549, and 3T6 cells, with iPSCs retaining >80% viability. Crucially, E/T effectively preserved iPSC-laden microspheres while preventing DMSO-induced apoptosis and preserving pluripotency. This work establishes a systematic protocol for cryopreserving cell-laden hydrogel microspheres without DMSO/FBS, providing a clinically translatable strategy to advance 3D cell culture technologies.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.5c00559\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00559","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ethylene Glycol and Trehalose Cryopreservation of Cell-Laden Hydrogel Microspheres Enabled by Microfluidic Fabrication.
Cell-laden hydrogel microspheres have gained significant attention in 3D cell culture applications, yet effective cryopreservation methods for these systems remain underexplored. This study developed a microfluidic platform for fabricating monodisperse, cell-laden microspheres and investigated a dimethyl sulfoxide (DMSO)- and fetal bovine serum (FBS)-free cryopreservation approach. The platform enabled rapid production of gelatin methacryloyl (GelMA) and calcium alginate (ALG) microspheres, demonstrating cell viability exceeding 80% for U251 cells in GelMA microspheres and 90% for both U251 cells and induced pluripotent stem cells (iPSCs) in ALG microspheres. A DMSO-/FBS-free cryoprotectant (12% ethylene glycol, 4% trehalose; E/T) was identified that maintained >90% post-thaw viability in GES, U251, HepG2, A549, and 3T6 cells, with iPSCs retaining >80% viability. Crucially, E/T effectively preserved iPSC-laden microspheres while preventing DMSO-induced apoptosis and preserving pluripotency. This work establishes a systematic protocol for cryopreserving cell-laden hydrogel microspheres without DMSO/FBS, providing a clinically translatable strategy to advance 3D cell culture technologies.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.