仿生莲藕双网络水凝胶可穿戴应变传感器用于人体运动和智能交通监测。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peng Liu, Yuanhang Li, Dong An, Shanshan Guan, Daishuang Zhang, Ning Tang, Hui Li, Yaxin Gu, Xiangyu Li, Yunwu Yu, Yaqi Wang
{"title":"仿生莲藕双网络水凝胶可穿戴应变传感器用于人体运动和智能交通监测。","authors":"Peng Liu, Yuanhang Li, Dong An, Shanshan Guan, Daishuang Zhang, Ning Tang, Hui Li, Yaxin Gu, Xiangyu Li, Yunwu Yu, Yaqi Wang","doi":"10.1021/acs.biomac.5c01664","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we developed a novel strain-sensing polyacrylamide (PAM) and sodium alginate (SA)/Cellulose/Pectin-Ca<sup>2+</sup> (PSCP-Ca<sup>2+</sup>) composite hydrogel by integrating cellulose-pectin reinforcing networks into a dual-network matrix composed of PAM and SA, with Ca<sup>2+</sup> ions serving as both structural cross-linkers and charge carriers. The PSCP-Ca<sup>2+</sup> hydrogel demonstrated excellent mechanical properties (630 kPa stress, 1700% strain, and 5.8 MJ/m<sup>3</sup> toughness), good self-healing properties, and high electrical conductivity (0.89 S/m). When employed as a flexible strain sensor, it exhibited a high gauge factor in both tension (GF = 3.74) and compression (GF = 6.48), a broad response range (0-1000% strain), and excellent fatigue resistance (2000+ tensile cycles and 500+ compressive cycles). This work provides valuable insights for designing high-performance hydrogel sensors and advances the practical implementation of flexible electronics in smart wearable devices and intelligent transportation systems.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Biomimetic Lotus Root-Inspired Dual-Network Hydrogel Wearable Strain Sensor for Human Motion and Intelligent Traffic Monitoring.\",\"authors\":\"Peng Liu, Yuanhang Li, Dong An, Shanshan Guan, Daishuang Zhang, Ning Tang, Hui Li, Yaxin Gu, Xiangyu Li, Yunwu Yu, Yaqi Wang\",\"doi\":\"10.1021/acs.biomac.5c01664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we developed a novel strain-sensing polyacrylamide (PAM) and sodium alginate (SA)/Cellulose/Pectin-Ca<sup>2+</sup> (PSCP-Ca<sup>2+</sup>) composite hydrogel by integrating cellulose-pectin reinforcing networks into a dual-network matrix composed of PAM and SA, with Ca<sup>2+</sup> ions serving as both structural cross-linkers and charge carriers. The PSCP-Ca<sup>2+</sup> hydrogel demonstrated excellent mechanical properties (630 kPa stress, 1700% strain, and 5.8 MJ/m<sup>3</sup> toughness), good self-healing properties, and high electrical conductivity (0.89 S/m). When employed as a flexible strain sensor, it exhibited a high gauge factor in both tension (GF = 3.74) and compression (GF = 6.48), a broad response range (0-1000% strain), and excellent fatigue resistance (2000+ tensile cycles and 500+ compressive cycles). This work provides valuable insights for designing high-performance hydrogel sensors and advances the practical implementation of flexible electronics in smart wearable devices and intelligent transportation systems.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.5c01664\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c01664","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们通过将纤维素-果胶增强网络整合成由PAM和SA组成的双网络基质,以Ca2+离子作为结构交联剂和电荷载体,开发了一种新型的应变传感聚丙烯酰胺(PAM)和海藻酸钠(SA)/纤维素/果胶-Ca2+ (PSCP-Ca2+)复合水凝胶。PSCP-Ca2+水凝胶具有优异的力学性能(630 kPa应力,1700%应变,5.8 MJ/m3韧性),良好的自愈性能和高导电性(0.89 S/m)。当用作柔性应变传感器时,它在张力(GF = 3.74)和压缩(GF = 6.48)中均表现出较高的应变系数,响应范围宽(0-1000%应变),并且具有优异的抗疲劳性能(2000+张循环和500+压循环)。这项工作为设计高性能水凝胶传感器提供了有价值的见解,并推动了柔性电子在智能可穿戴设备和智能交通系统中的实际实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Biomimetic Lotus Root-Inspired Dual-Network Hydrogel Wearable Strain Sensor for Human Motion and Intelligent Traffic Monitoring.

In this study, we developed a novel strain-sensing polyacrylamide (PAM) and sodium alginate (SA)/Cellulose/Pectin-Ca2+ (PSCP-Ca2+) composite hydrogel by integrating cellulose-pectin reinforcing networks into a dual-network matrix composed of PAM and SA, with Ca2+ ions serving as both structural cross-linkers and charge carriers. The PSCP-Ca2+ hydrogel demonstrated excellent mechanical properties (630 kPa stress, 1700% strain, and 5.8 MJ/m3 toughness), good self-healing properties, and high electrical conductivity (0.89 S/m). When employed as a flexible strain sensor, it exhibited a high gauge factor in both tension (GF = 3.74) and compression (GF = 6.48), a broad response range (0-1000% strain), and excellent fatigue resistance (2000+ tensile cycles and 500+ compressive cycles). This work provides valuable insights for designing high-performance hydrogel sensors and advances the practical implementation of flexible electronics in smart wearable devices and intelligent transportation systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信