{"title":"俯瞰JNp(Rn)","authors":"Shahaboddin Shaabani","doi":"10.1016/j.jfa.2025.111235","DOIUrl":null,"url":null,"abstract":"<div><div>For a symmetric convex body <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, we define the space <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> to be the tent generalization of <span><math><msub><mrow><mtext>JN</mtext></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, i.e., the space of all continuous functions <em>f</em> on the upper-half space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> such that<span><span><span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></mrow></msub><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><munder><mi>sup</mi><mrow><mi>C</mi></mrow></munder><mo></mo><munder><mo>∑</mo><mrow><mi>B</mi><mo>∈</mo><mi>C</mi></mrow></munder><mo>|</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>B</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo><</mo><mo>∞</mo><mo>,</mo></math></span></span></span> where, in the above, the supremum is taken over all finite disjoint collections of homothetic copies of <em>K</em>. It is then shown that the dual of <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the closure of the space of continuous functions with compact support in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, consists of all Radon measures on <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> with uniformly bounded total variation on cones with base <em>K</em> and vertex in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In addition, a similar scale of spaces is defined in the dyadic setting, and for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, a complete characterization of their duals is given. We apply our results to study dyadic <span><math><msub><mrow><mtext>JN</mtext></mrow><mrow><mi>p</mi></mrow></msub></math></span> spaces.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 3","pages":"Article 111235"},"PeriodicalIF":1.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A view from above on JNp(Rn)\",\"authors\":\"Shahaboddin Shaabani\",\"doi\":\"10.1016/j.jfa.2025.111235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a symmetric convex body <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, we define the space <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> to be the tent generalization of <span><math><msub><mrow><mtext>JN</mtext></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, i.e., the space of all continuous functions <em>f</em> on the upper-half space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> such that<span><span><span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></mrow></msub><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><munder><mi>sup</mi><mrow><mi>C</mi></mrow></munder><mo></mo><munder><mo>∑</mo><mrow><mi>B</mi><mo>∈</mo><mi>C</mi></mrow></munder><mo>|</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>B</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo><</mo><mo>∞</mo><mo>,</mo></math></span></span></span> where, in the above, the supremum is taken over all finite disjoint collections of homothetic copies of <em>K</em>. It is then shown that the dual of <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the closure of the space of continuous functions with compact support in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, consists of all Radon measures on <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> with uniformly bounded total variation on cones with base <em>K</em> and vertex in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In addition, a similar scale of spaces is defined in the dyadic setting, and for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, a complete characterization of their duals is given. We apply our results to study dyadic <span><math><msub><mrow><mtext>JN</mtext></mrow><mrow><mi>p</mi></mrow></msub></math></span> spaces.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"290 3\",\"pages\":\"Article 111235\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625004173\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625004173","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a symmetric convex body and , we define the space to be the tent generalization of , i.e., the space of all continuous functions f on the upper-half space such that where, in the above, the supremum is taken over all finite disjoint collections of homothetic copies of K. It is then shown that the dual of , the closure of the space of continuous functions with compact support in , consists of all Radon measures on with uniformly bounded total variation on cones with base K and vertex in . In addition, a similar scale of spaces is defined in the dyadic setting, and for , a complete characterization of their duals is given. We apply our results to study dyadic spaces.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis