发动机燃烧室不同喷口氢气射流撞击实验研究

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-10-15 DOI:10.1016/j.fuel.2025.137171
Shenghao Yu , Dong Xie , Peng Sun , Jiao Wang , Jianxin Xu
{"title":"发动机燃烧室不同喷口氢气射流撞击实验研究","authors":"Shenghao Yu ,&nbsp;Dong Xie ,&nbsp;Peng Sun ,&nbsp;Jiao Wang ,&nbsp;Jianxin Xu","doi":"10.1016/j.fuel.2025.137171","DOIUrl":null,"url":null,"abstract":"<div><div>Direct injection hydrogen engines enable precise fuel jets development control for high-efficiency, low-emission combustion systems. However, performance depends on fuel–air mixing quality affected by wall-impinging hydrogen jets. Current studies lack systematic investigation of jet-wall interactions under engine-representative confined conditions. This study experimentally investigates hydrogen jet impingement in an engine-dimensioned combustion chamber using high-speed schlieren imaging under injection pressures ranging from 0.5 to 1.0 MPa, nozzle diameters between 1.0 and 2.5 mm, and impingement distances from 20.6 to 42.6 mm at ambient conditions of 298 K and 1 atm. Results reveal that elevated injection pressure significantly enhances spreading radius, entrainment height, and projected area by accelerating momentum conversion into radial flows and promoting faster impingement stabilization with improved mixing efficiency. Shorter impingement distances intensify radial momentum conversion through earlier wall interaction at higher axial momentum, whereas longer distances weaken impingement intensity due to turbulence-induced momentum decay and reduced spatial utilization. Larger nozzle diameters substantially improve post-impingement behavior through higher momentum flux and enhanced turbulence, promoting more vigorous wall interaction and broader radial dispersion with complex vortex dynamics. Interestingly, for a given cumulative injected mass, smaller-diameter nozzles can produce larger projected areas due to longer injection durations, which allow more time for axial and lateral spreading before reaching the measurement plane. This work specifically addresses low-pressure direct injection systems, and the findings provide critical insights for optimizing injection parameters and combustion chamber geometry for direct-injection hydrogen engines.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"406 ","pages":"Article 137171"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of hydrogen jet impingement from different nozzle orifices in an engine combustion chamber\",\"authors\":\"Shenghao Yu ,&nbsp;Dong Xie ,&nbsp;Peng Sun ,&nbsp;Jiao Wang ,&nbsp;Jianxin Xu\",\"doi\":\"10.1016/j.fuel.2025.137171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Direct injection hydrogen engines enable precise fuel jets development control for high-efficiency, low-emission combustion systems. However, performance depends on fuel–air mixing quality affected by wall-impinging hydrogen jets. Current studies lack systematic investigation of jet-wall interactions under engine-representative confined conditions. This study experimentally investigates hydrogen jet impingement in an engine-dimensioned combustion chamber using high-speed schlieren imaging under injection pressures ranging from 0.5 to 1.0 MPa, nozzle diameters between 1.0 and 2.5 mm, and impingement distances from 20.6 to 42.6 mm at ambient conditions of 298 K and 1 atm. Results reveal that elevated injection pressure significantly enhances spreading radius, entrainment height, and projected area by accelerating momentum conversion into radial flows and promoting faster impingement stabilization with improved mixing efficiency. Shorter impingement distances intensify radial momentum conversion through earlier wall interaction at higher axial momentum, whereas longer distances weaken impingement intensity due to turbulence-induced momentum decay and reduced spatial utilization. Larger nozzle diameters substantially improve post-impingement behavior through higher momentum flux and enhanced turbulence, promoting more vigorous wall interaction and broader radial dispersion with complex vortex dynamics. Interestingly, for a given cumulative injected mass, smaller-diameter nozzles can produce larger projected areas due to longer injection durations, which allow more time for axial and lateral spreading before reaching the measurement plane. This work specifically addresses low-pressure direct injection systems, and the findings provide critical insights for optimizing injection parameters and combustion chamber geometry for direct-injection hydrogen engines.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"406 \",\"pages\":\"Article 137171\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236125028960\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125028960","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

直喷式氢发动机能够精确控制燃油喷射的发展,实现高效、低排放的燃烧系统。然而,性能取决于燃料空气混合质量的影响壁撞击氢射流。目前的研究缺乏对发动机典型约束条件下射流壁相互作用的系统研究。本研究利用高速纹影成像技术,对发动机尺寸燃烧室中氢气射流的撞击进行了实验研究,实验条件为:喷射压力为0.5 ~ 1.0 MPa,喷嘴直径为1.0 ~ 2.5 mm,撞击距离为20.6 ~ 42.6 mm,环境温度为298 K, 1atm。结果表明,通过加速动量向径向流动的转化,提高混合效率,促进更快的冲击稳定,喷射压力的升高显著提高了扩散半径、夹带高度和投射面积。在较高的轴向动量下,较短的撞击距离通过较早的壁面相互作用增强径向动量转换,而较长的撞击距离由于湍流引起的动量衰减和空间利用率降低而减弱撞击强度。更大的喷嘴直径通过更高的动量通量和增强的湍流,大大改善了撞击后的行为,促进了更剧烈的壁面相互作用和更广泛的径向弥散与复杂的涡旋动力学。有趣的是,对于给定的累积注入质量,较小直径的喷嘴可以产生更大的投影面积,因为注入持续时间更长,这使得在到达测量平面之前有更多的时间进行轴向和横向扩散。这项工作专门针对低压直喷系统,研究结果为优化直喷氢发动机的喷射参数和燃烧室几何形状提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigation of hydrogen jet impingement from different nozzle orifices in an engine combustion chamber
Direct injection hydrogen engines enable precise fuel jets development control for high-efficiency, low-emission combustion systems. However, performance depends on fuel–air mixing quality affected by wall-impinging hydrogen jets. Current studies lack systematic investigation of jet-wall interactions under engine-representative confined conditions. This study experimentally investigates hydrogen jet impingement in an engine-dimensioned combustion chamber using high-speed schlieren imaging under injection pressures ranging from 0.5 to 1.0 MPa, nozzle diameters between 1.0 and 2.5 mm, and impingement distances from 20.6 to 42.6 mm at ambient conditions of 298 K and 1 atm. Results reveal that elevated injection pressure significantly enhances spreading radius, entrainment height, and projected area by accelerating momentum conversion into radial flows and promoting faster impingement stabilization with improved mixing efficiency. Shorter impingement distances intensify radial momentum conversion through earlier wall interaction at higher axial momentum, whereas longer distances weaken impingement intensity due to turbulence-induced momentum decay and reduced spatial utilization. Larger nozzle diameters substantially improve post-impingement behavior through higher momentum flux and enhanced turbulence, promoting more vigorous wall interaction and broader radial dispersion with complex vortex dynamics. Interestingly, for a given cumulative injected mass, smaller-diameter nozzles can produce larger projected areas due to longer injection durations, which allow more time for axial and lateral spreading before reaching the measurement plane. This work specifically addresses low-pressure direct injection systems, and the findings provide critical insights for optimizing injection parameters and combustion chamber geometry for direct-injection hydrogen engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信