{"title":"SpectroGen:用于加速跨模态光谱材料表征的物理信息生成人工智能","authors":"Yanmin Zhu, Loza F. Tadesse","doi":"10.1016/j.matt.2025.102434","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI)-driven materials discovery offers rapid design of novel material compositions, yet synthesis and characterization lag behind. Characterization, in particular, remains bottlenecked by labor-intensive experiments using expert-operated instruments that typically rely on electromagnetic spectroscopy. We introduce SpectroGen, a generative AI model for transmodality spectral generation, designed to accelerate materials characterization. SpectroGen generates high-resolution, high-signal-to-noise ratio spectra with 99% correlation to ground truth and a root-mean-square error of 0.01 a.u. Its performance is driven by two key innovations: (1) a novel distribution-based physical prior and (2) a variational autoencoder (VAE) architecture. The prior simplifies complex structural inputs into interpretable Gaussian or Lorentzian distributions, while the VAE maps them into a physically grounded latent space for accurate spectral transformation. SpectroGen generalizes across spectral domains and promises rapid, accurate spectral predictions, potentially transforming high-throughput discovery in domains such as battery materials, catalysts, superconductors, and pharmaceuticals.","PeriodicalId":388,"journal":{"name":"Matter","volume":"31 1","pages":""},"PeriodicalIF":17.5000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SpectroGen: A physically informed generative artificial intelligence for accelerated cross-modality spectroscopic materials characterization\",\"authors\":\"Yanmin Zhu, Loza F. Tadesse\",\"doi\":\"10.1016/j.matt.2025.102434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI)-driven materials discovery offers rapid design of novel material compositions, yet synthesis and characterization lag behind. Characterization, in particular, remains bottlenecked by labor-intensive experiments using expert-operated instruments that typically rely on electromagnetic spectroscopy. We introduce SpectroGen, a generative AI model for transmodality spectral generation, designed to accelerate materials characterization. SpectroGen generates high-resolution, high-signal-to-noise ratio spectra with 99% correlation to ground truth and a root-mean-square error of 0.01 a.u. Its performance is driven by two key innovations: (1) a novel distribution-based physical prior and (2) a variational autoencoder (VAE) architecture. The prior simplifies complex structural inputs into interpretable Gaussian or Lorentzian distributions, while the VAE maps them into a physically grounded latent space for accurate spectral transformation. SpectroGen generalizes across spectral domains and promises rapid, accurate spectral predictions, potentially transforming high-throughput discovery in domains such as battery materials, catalysts, superconductors, and pharmaceuticals.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":17.5000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2025.102434\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102434","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
SpectroGen: A physically informed generative artificial intelligence for accelerated cross-modality spectroscopic materials characterization
Artificial intelligence (AI)-driven materials discovery offers rapid design of novel material compositions, yet synthesis and characterization lag behind. Characterization, in particular, remains bottlenecked by labor-intensive experiments using expert-operated instruments that typically rely on electromagnetic spectroscopy. We introduce SpectroGen, a generative AI model for transmodality spectral generation, designed to accelerate materials characterization. SpectroGen generates high-resolution, high-signal-to-noise ratio spectra with 99% correlation to ground truth and a root-mean-square error of 0.01 a.u. Its performance is driven by two key innovations: (1) a novel distribution-based physical prior and (2) a variational autoencoder (VAE) architecture. The prior simplifies complex structural inputs into interpretable Gaussian or Lorentzian distributions, while the VAE maps them into a physically grounded latent space for accurate spectral transformation. SpectroGen generalizes across spectral domains and promises rapid, accurate spectral predictions, potentially transforming high-throughput discovery in domains such as battery materials, catalysts, superconductors, and pharmaceuticals.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.