{"title":"向净零碳过渡的碳储存组合","authors":"Conor Hickey, Stuart Jenkins, Myles Allen","doi":"10.1016/j.joule.2025.102164","DOIUrl":null,"url":null,"abstract":"Net-zero targets are widely adopted by companies and countries worldwide. To achieve these goals, more companies are investing in diverse carbon removal portfolios. This study develops a new risk management framework that combines forestry, biochar, and geological storage offsets into portfolios that could stabilize global temperatures over multi-century time periods. We find that if a carbon storage portfolio reaches an equilibrium state of CO<sub>2</sub> stored, it can be leveraged to stabilize global temperatures by increasing the size of the portfolio relative to the amount of removal claimed. For moderate-risk primarily forestry portfolios retaining 0.75–0.55 tCO<sub>2</sub> of the 1 tCO<sub>2</sub> stored, an additional 0.30–0.80 tCO<sub>2</sub> removal is needed to offset re-releases over 1,000 years. High-risk portfolios retaining only 0.10 tCO<sub>2</sub> require over 9 tCO<sub>2</sub> additional removal. Portfolios that are predicted to re-release almost all CO<sub>2</sub> cannot be leveraged and are ineffective at meeting temperature stabilization goals. These findings have implications for policy and corporate climate action.","PeriodicalId":343,"journal":{"name":"Joule","volume":"51 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon storage portfolios for the transition to net zero\",\"authors\":\"Conor Hickey, Stuart Jenkins, Myles Allen\",\"doi\":\"10.1016/j.joule.2025.102164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Net-zero targets are widely adopted by companies and countries worldwide. To achieve these goals, more companies are investing in diverse carbon removal portfolios. This study develops a new risk management framework that combines forestry, biochar, and geological storage offsets into portfolios that could stabilize global temperatures over multi-century time periods. We find that if a carbon storage portfolio reaches an equilibrium state of CO<sub>2</sub> stored, it can be leveraged to stabilize global temperatures by increasing the size of the portfolio relative to the amount of removal claimed. For moderate-risk primarily forestry portfolios retaining 0.75–0.55 tCO<sub>2</sub> of the 1 tCO<sub>2</sub> stored, an additional 0.30–0.80 tCO<sub>2</sub> removal is needed to offset re-releases over 1,000 years. High-risk portfolios retaining only 0.10 tCO<sub>2</sub> require over 9 tCO<sub>2</sub> additional removal. Portfolios that are predicted to re-release almost all CO<sub>2</sub> cannot be leveraged and are ineffective at meeting temperature stabilization goals. These findings have implications for policy and corporate climate action.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.102164\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102164","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Carbon storage portfolios for the transition to net zero
Net-zero targets are widely adopted by companies and countries worldwide. To achieve these goals, more companies are investing in diverse carbon removal portfolios. This study develops a new risk management framework that combines forestry, biochar, and geological storage offsets into portfolios that could stabilize global temperatures over multi-century time periods. We find that if a carbon storage portfolio reaches an equilibrium state of CO2 stored, it can be leveraged to stabilize global temperatures by increasing the size of the portfolio relative to the amount of removal claimed. For moderate-risk primarily forestry portfolios retaining 0.75–0.55 tCO2 of the 1 tCO2 stored, an additional 0.30–0.80 tCO2 removal is needed to offset re-releases over 1,000 years. High-risk portfolios retaining only 0.10 tCO2 require over 9 tCO2 additional removal. Portfolios that are predicted to re-release almost all CO2 cannot be leveraged and are ineffective at meeting temperature stabilization goals. These findings have implications for policy and corporate climate action.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.