{"title":"重子数违反核子衰变的新手性结构","authors":"Yi Liao, Xiao-Dong Ma, Hao-Lin Wang","doi":"10.1103/d8m7-5xxx","DOIUrl":null,"url":null,"abstract":"We examine the most general nucleon decay interactions that involve three light quarks without being acted upon by a derivative. We identify four generic operator structures that correspond to the irreducible representations in the chiral group SU</a:mi>(</a:mo>3</a:mn>)</a:mo></a:mrow>L</a:mi></a:mrow></a:msub>⊗</a:mo>SU</a:mi>(</a:mo>3</a:mn>)</a:mo></a:mrow>R</a:mi></a:mrow></a:msub></a:mrow></a:math> of QCD, <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mrow><j:mo stretchy=\"false\">{</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">8</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">1</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mover accent=\"true\"><j:mrow><j:mn mathvariant=\"bold\">3</j:mn></j:mrow><j:mrow><j:mo stretchy=\"false\">¯</j:mo></j:mrow></j:mover></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">3</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">6</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">3</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">10</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">1</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">R</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">}</j:mo></j:mrow></j:math>, plus their chirality partners under the interchange of chiralities <jb:math xmlns:jb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jb:mrow><jb:mi mathvariant=\"monospace\">L</jb:mi></jb:mrow><jb:mo stretchy=\"false\">↔</jb:mo><jb:mrow><jb:mi mathvariant=\"monospace\">R</jb:mi></jb:mrow></jb:math>. While half of them have been extensively discussed in the literature, the other half, <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:mrow><ob:msub><ob:mrow><ob:mn mathvariant=\"bold\">6</ob:mn></ob:mrow><ob:mrow><ob:mi mathvariant=\"monospace\">L</ob:mi><ob:mo stretchy=\"false\">(</ob:mo><ob:mi mathvariant=\"monospace\">R</ob:mi><ob:mo stretchy=\"false\">)</ob:mo></ob:mrow></ob:msub><ob:mo stretchy=\"false\">⊗</ob:mo><ob:msub><ob:mrow><ob:mn mathvariant=\"bold\">3</ob:mn></ob:mrow><ob:mrow><ob:mi mathvariant=\"monospace\">R</ob:mi><ob:mo stretchy=\"false\">(</ob:mo><ob:mi mathvariant=\"monospace\">L</ob:mi><ob:mo stretchy=\"false\">)</ob:mo></ob:mrow></ob:msub></ob:mrow></ob:math> and <bc:math xmlns:bc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bc:mrow><bc:msub><bc:mrow><bc:mover accent=\"true\"><bc:mrow><bc:mn mathvariant=\"bold\">10</bc:mn></bc:mrow><bc:mrow><bc:mo stretchy=\"true\">¯</bc:mo></bc:mrow></bc:mover></bc:mrow><bc:mrow><bc:mi mathvariant=\"monospace\">L</bc:mi><bc:mo stretchy=\"false\">(</bc:mo><bc:mi mathvariant=\"monospace\">R</bc:mi><bc:mo stretchy=\"false\">)</bc:mo></bc:mrow></bc:msub><bc:mo stretchy=\"false\">⊗</bc:mo><bc:msub><bc:mrow><bc:mn mathvariant=\"bold\">1</bc:mn></bc:mrow><bc:mrow><bc:mi mathvariant=\"monospace\">R</bc:mi><bc:mo stretchy=\"false\">(</bc:mo><bc:mi mathvariant=\"monospace\">L</bc:mi><bc:mo stretchy=\"false\">)</bc:mo></bc:mrow></bc:msub></bc:mrow></bc:math>, are identified for the first time. We perform chiral matching for these interactions at the leading chiral order and find that each has a unique chiral realization in terms of the octet baryons and pseudoscalars. Notably, the chiral interaction in the <qc:math xmlns:qc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qc:mrow><qc:msub><qc:mrow><qc:mn mathvariant=\"bold\">6</qc:mn></qc:mrow><qc:mrow><qc:mi mathvariant=\"monospace\">L</qc:mi><qc:mo stretchy=\"false\">(</qc:mo><qc:mi mathvariant=\"monospace\">R</qc:mi><qc:mo stretchy=\"false\">)</qc:mo></qc:mrow></qc:msub><qc:mo stretchy=\"false\">⊗</qc:mo><qc:msub><qc:mrow><qc:mn mathvariant=\"bold\">3</qc:mn></qc:mrow><qc:mrow><qc:mi mathvariant=\"monospace\">R</qc:mi><qc:mo stretchy=\"false\">(</qc:mo><qc:mi mathvariant=\"monospace\">L</qc:mi><qc:mo stretchy=\"false\">)</qc:mo></qc:mrow></qc:msub></qc:mrow></qc:math> representation appears at the same chiral order as those of the known ones, while the one in the <dd:math xmlns:dd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><dd:msub><dd:mn mathvariant=\"bold\">10</dd:mn><dd:mrow><dd:mi mathvariant=\"monospace\">L</dd:mi><dd:mo stretchy=\"false\">(</dd:mo><dd:mi mathvariant=\"monospace\">R</dd:mi><dd:mo stretchy=\"false\">)</dd:mo></dd:mrow></dd:msub><dd:mo stretchy=\"false\">⊗</dd:mo><dd:msub><dd:mn mathvariant=\"bold\">1</dd:mn><dd:mrow><dd:mi mathvariant=\"monospace\">R</dd:mi><dd:mo stretchy=\"false\">(</dd:mo><dd:mi mathvariant=\"monospace\">L</dd:mi><dd:mo stretchy=\"false\">)</dd:mo></dd:mrow></dd:msub></dd:math> representation appears at a higher chiral order. These new structures are prevalent in effective field theories and ultraviolet models, and they offer novel experimental avenues to search for baryon number violating nucleon decays.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"41 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Chiral Structures for Baryon Number Violating Nucleon Decays\",\"authors\":\"Yi Liao, Xiao-Dong Ma, Hao-Lin Wang\",\"doi\":\"10.1103/d8m7-5xxx\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the most general nucleon decay interactions that involve three light quarks without being acted upon by a derivative. We identify four generic operator structures that correspond to the irreducible representations in the chiral group SU</a:mi>(</a:mo>3</a:mn>)</a:mo></a:mrow>L</a:mi></a:mrow></a:msub>⊗</a:mo>SU</a:mi>(</a:mo>3</a:mn>)</a:mo></a:mrow>R</a:mi></a:mrow></a:msub></a:mrow></a:math> of QCD, <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:mrow><j:mo stretchy=\\\"false\\\">{</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">8</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">1</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mover accent=\\\"true\\\"><j:mrow><j:mn mathvariant=\\\"bold\\\">3</j:mn></j:mrow><j:mrow><j:mo stretchy=\\\"false\\\">¯</j:mo></j:mrow></j:mover></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">3</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">6</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">3</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">10</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">1</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">R</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">}</j:mo></j:mrow></j:math>, plus their chirality partners under the interchange of chiralities <jb:math xmlns:jb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><jb:mrow><jb:mi mathvariant=\\\"monospace\\\">L</jb:mi></jb:mrow><jb:mo stretchy=\\\"false\\\">↔</jb:mo><jb:mrow><jb:mi mathvariant=\\\"monospace\\\">R</jb:mi></jb:mrow></jb:math>. While half of them have been extensively discussed in the literature, the other half, <ob:math xmlns:ob=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ob:mrow><ob:msub><ob:mrow><ob:mn mathvariant=\\\"bold\\\">6</ob:mn></ob:mrow><ob:mrow><ob:mi mathvariant=\\\"monospace\\\">L</ob:mi><ob:mo stretchy=\\\"false\\\">(</ob:mo><ob:mi mathvariant=\\\"monospace\\\">R</ob:mi><ob:mo stretchy=\\\"false\\\">)</ob:mo></ob:mrow></ob:msub><ob:mo stretchy=\\\"false\\\">⊗</ob:mo><ob:msub><ob:mrow><ob:mn mathvariant=\\\"bold\\\">3</ob:mn></ob:mrow><ob:mrow><ob:mi mathvariant=\\\"monospace\\\">R</ob:mi><ob:mo stretchy=\\\"false\\\">(</ob:mo><ob:mi mathvariant=\\\"monospace\\\">L</ob:mi><ob:mo stretchy=\\\"false\\\">)</ob:mo></ob:mrow></ob:msub></ob:mrow></ob:math> and <bc:math xmlns:bc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><bc:mrow><bc:msub><bc:mrow><bc:mover accent=\\\"true\\\"><bc:mrow><bc:mn mathvariant=\\\"bold\\\">10</bc:mn></bc:mrow><bc:mrow><bc:mo stretchy=\\\"true\\\">¯</bc:mo></bc:mrow></bc:mover></bc:mrow><bc:mrow><bc:mi mathvariant=\\\"monospace\\\">L</bc:mi><bc:mo stretchy=\\\"false\\\">(</bc:mo><bc:mi mathvariant=\\\"monospace\\\">R</bc:mi><bc:mo stretchy=\\\"false\\\">)</bc:mo></bc:mrow></bc:msub><bc:mo stretchy=\\\"false\\\">⊗</bc:mo><bc:msub><bc:mrow><bc:mn mathvariant=\\\"bold\\\">1</bc:mn></bc:mrow><bc:mrow><bc:mi mathvariant=\\\"monospace\\\">R</bc:mi><bc:mo stretchy=\\\"false\\\">(</bc:mo><bc:mi mathvariant=\\\"monospace\\\">L</bc:mi><bc:mo stretchy=\\\"false\\\">)</bc:mo></bc:mrow></bc:msub></bc:mrow></bc:math>, are identified for the first time. We perform chiral matching for these interactions at the leading chiral order and find that each has a unique chiral realization in terms of the octet baryons and pseudoscalars. Notably, the chiral interaction in the <qc:math xmlns:qc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><qc:mrow><qc:msub><qc:mrow><qc:mn mathvariant=\\\"bold\\\">6</qc:mn></qc:mrow><qc:mrow><qc:mi mathvariant=\\\"monospace\\\">L</qc:mi><qc:mo stretchy=\\\"false\\\">(</qc:mo><qc:mi mathvariant=\\\"monospace\\\">R</qc:mi><qc:mo stretchy=\\\"false\\\">)</qc:mo></qc:mrow></qc:msub><qc:mo stretchy=\\\"false\\\">⊗</qc:mo><qc:msub><qc:mrow><qc:mn mathvariant=\\\"bold\\\">3</qc:mn></qc:mrow><qc:mrow><qc:mi mathvariant=\\\"monospace\\\">R</qc:mi><qc:mo stretchy=\\\"false\\\">(</qc:mo><qc:mi mathvariant=\\\"monospace\\\">L</qc:mi><qc:mo stretchy=\\\"false\\\">)</qc:mo></qc:mrow></qc:msub></qc:mrow></qc:math> representation appears at the same chiral order as those of the known ones, while the one in the <dd:math xmlns:dd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><dd:msub><dd:mn mathvariant=\\\"bold\\\">10</dd:mn><dd:mrow><dd:mi mathvariant=\\\"monospace\\\">L</dd:mi><dd:mo stretchy=\\\"false\\\">(</dd:mo><dd:mi mathvariant=\\\"monospace\\\">R</dd:mi><dd:mo stretchy=\\\"false\\\">)</dd:mo></dd:mrow></dd:msub><dd:mo stretchy=\\\"false\\\">⊗</dd:mo><dd:msub><dd:mn mathvariant=\\\"bold\\\">1</dd:mn><dd:mrow><dd:mi mathvariant=\\\"monospace\\\">R</dd:mi><dd:mo stretchy=\\\"false\\\">(</dd:mo><dd:mi mathvariant=\\\"monospace\\\">L</dd:mi><dd:mo stretchy=\\\"false\\\">)</dd:mo></dd:mrow></dd:msub></dd:math> representation appears at a higher chiral order. These new structures are prevalent in effective field theories and ultraviolet models, and they offer novel experimental avenues to search for baryon number violating nucleon decays.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/d8m7-5xxx\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/d8m7-5xxx","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
New Chiral Structures for Baryon Number Violating Nucleon Decays
We examine the most general nucleon decay interactions that involve three light quarks without being acted upon by a derivative. We identify four generic operator structures that correspond to the irreducible representations in the chiral group SU(3)L⊗SU(3)R of QCD, {8L⊗1R,3¯L⊗3R,6L⊗3R,10L⊗1R}, plus their chirality partners under the interchange of chiralities L↔R. While half of them have been extensively discussed in the literature, the other half, 6L(R)⊗3R(L) and 10¯L(R)⊗1R(L), are identified for the first time. We perform chiral matching for these interactions at the leading chiral order and find that each has a unique chiral realization in terms of the octet baryons and pseudoscalars. Notably, the chiral interaction in the 6L(R)⊗3R(L) representation appears at the same chiral order as those of the known ones, while the one in the 10L(R)⊗1R(L) representation appears at a higher chiral order. These new structures are prevalent in effective field theories and ultraviolet models, and they offer novel experimental avenues to search for baryon number violating nucleon decays.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks