重子数违反核子衰变的新手性结构

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yi Liao, Xiao-Dong Ma, Hao-Lin Wang
{"title":"重子数违反核子衰变的新手性结构","authors":"Yi Liao, Xiao-Dong Ma, Hao-Lin Wang","doi":"10.1103/d8m7-5xxx","DOIUrl":null,"url":null,"abstract":"We examine the most general nucleon decay interactions that involve three light quarks without being acted upon by a derivative. We identify four generic operator structures that correspond to the irreducible representations in the chiral group SU</a:mi>(</a:mo>3</a:mn>)</a:mo></a:mrow>L</a:mi></a:mrow></a:msub>⊗</a:mo>SU</a:mi>(</a:mo>3</a:mn>)</a:mo></a:mrow>R</a:mi></a:mrow></a:msub></a:mrow></a:math> of QCD, <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mrow><j:mo stretchy=\"false\">{</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">8</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">1</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mover accent=\"true\"><j:mrow><j:mn mathvariant=\"bold\">3</j:mn></j:mrow><j:mrow><j:mo stretchy=\"false\">¯</j:mo></j:mrow></j:mover></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">3</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">6</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">3</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">10</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\"bold\">1</j:mn></j:mrow><j:mrow><j:mi mathvariant=\"monospace\">R</j:mi></j:mrow></j:msub><j:mo stretchy=\"false\">}</j:mo></j:mrow></j:math>, plus their chirality partners under the interchange of chiralities <jb:math xmlns:jb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jb:mrow><jb:mi mathvariant=\"monospace\">L</jb:mi></jb:mrow><jb:mo stretchy=\"false\">↔</jb:mo><jb:mrow><jb:mi mathvariant=\"monospace\">R</jb:mi></jb:mrow></jb:math>. While half of them have been extensively discussed in the literature, the other half, <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:mrow><ob:msub><ob:mrow><ob:mn mathvariant=\"bold\">6</ob:mn></ob:mrow><ob:mrow><ob:mi mathvariant=\"monospace\">L</ob:mi><ob:mo stretchy=\"false\">(</ob:mo><ob:mi mathvariant=\"monospace\">R</ob:mi><ob:mo stretchy=\"false\">)</ob:mo></ob:mrow></ob:msub><ob:mo stretchy=\"false\">⊗</ob:mo><ob:msub><ob:mrow><ob:mn mathvariant=\"bold\">3</ob:mn></ob:mrow><ob:mrow><ob:mi mathvariant=\"monospace\">R</ob:mi><ob:mo stretchy=\"false\">(</ob:mo><ob:mi mathvariant=\"monospace\">L</ob:mi><ob:mo stretchy=\"false\">)</ob:mo></ob:mrow></ob:msub></ob:mrow></ob:math> and <bc:math xmlns:bc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bc:mrow><bc:msub><bc:mrow><bc:mover accent=\"true\"><bc:mrow><bc:mn mathvariant=\"bold\">10</bc:mn></bc:mrow><bc:mrow><bc:mo stretchy=\"true\">¯</bc:mo></bc:mrow></bc:mover></bc:mrow><bc:mrow><bc:mi mathvariant=\"monospace\">L</bc:mi><bc:mo stretchy=\"false\">(</bc:mo><bc:mi mathvariant=\"monospace\">R</bc:mi><bc:mo stretchy=\"false\">)</bc:mo></bc:mrow></bc:msub><bc:mo stretchy=\"false\">⊗</bc:mo><bc:msub><bc:mrow><bc:mn mathvariant=\"bold\">1</bc:mn></bc:mrow><bc:mrow><bc:mi mathvariant=\"monospace\">R</bc:mi><bc:mo stretchy=\"false\">(</bc:mo><bc:mi mathvariant=\"monospace\">L</bc:mi><bc:mo stretchy=\"false\">)</bc:mo></bc:mrow></bc:msub></bc:mrow></bc:math>, are identified for the first time. We perform chiral matching for these interactions at the leading chiral order and find that each has a unique chiral realization in terms of the octet baryons and pseudoscalars. Notably, the chiral interaction in the <qc:math xmlns:qc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qc:mrow><qc:msub><qc:mrow><qc:mn mathvariant=\"bold\">6</qc:mn></qc:mrow><qc:mrow><qc:mi mathvariant=\"monospace\">L</qc:mi><qc:mo stretchy=\"false\">(</qc:mo><qc:mi mathvariant=\"monospace\">R</qc:mi><qc:mo stretchy=\"false\">)</qc:mo></qc:mrow></qc:msub><qc:mo stretchy=\"false\">⊗</qc:mo><qc:msub><qc:mrow><qc:mn mathvariant=\"bold\">3</qc:mn></qc:mrow><qc:mrow><qc:mi mathvariant=\"monospace\">R</qc:mi><qc:mo stretchy=\"false\">(</qc:mo><qc:mi mathvariant=\"monospace\">L</qc:mi><qc:mo stretchy=\"false\">)</qc:mo></qc:mrow></qc:msub></qc:mrow></qc:math> representation appears at the same chiral order as those of the known ones, while the one in the <dd:math xmlns:dd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><dd:msub><dd:mn mathvariant=\"bold\">10</dd:mn><dd:mrow><dd:mi mathvariant=\"monospace\">L</dd:mi><dd:mo stretchy=\"false\">(</dd:mo><dd:mi mathvariant=\"monospace\">R</dd:mi><dd:mo stretchy=\"false\">)</dd:mo></dd:mrow></dd:msub><dd:mo stretchy=\"false\">⊗</dd:mo><dd:msub><dd:mn mathvariant=\"bold\">1</dd:mn><dd:mrow><dd:mi mathvariant=\"monospace\">R</dd:mi><dd:mo stretchy=\"false\">(</dd:mo><dd:mi mathvariant=\"monospace\">L</dd:mi><dd:mo stretchy=\"false\">)</dd:mo></dd:mrow></dd:msub></dd:math> representation appears at a higher chiral order. These new structures are prevalent in effective field theories and ultraviolet models, and they offer novel experimental avenues to search for baryon number violating nucleon decays.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"41 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Chiral Structures for Baryon Number Violating Nucleon Decays\",\"authors\":\"Yi Liao, Xiao-Dong Ma, Hao-Lin Wang\",\"doi\":\"10.1103/d8m7-5xxx\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the most general nucleon decay interactions that involve three light quarks without being acted upon by a derivative. We identify four generic operator structures that correspond to the irreducible representations in the chiral group SU</a:mi>(</a:mo>3</a:mn>)</a:mo></a:mrow>L</a:mi></a:mrow></a:msub>⊗</a:mo>SU</a:mi>(</a:mo>3</a:mn>)</a:mo></a:mrow>R</a:mi></a:mrow></a:msub></a:mrow></a:math> of QCD, <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:mrow><j:mo stretchy=\\\"false\\\">{</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">8</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">1</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mover accent=\\\"true\\\"><j:mrow><j:mn mathvariant=\\\"bold\\\">3</j:mn></j:mrow><j:mrow><j:mo stretchy=\\\"false\\\">¯</j:mo></j:mrow></j:mover></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">3</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">6</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">3</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">R</j:mi></j:mrow></j:msub><j:mo>,</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">10</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">L</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">⊗</j:mo><j:msub><j:mrow><j:mn mathvariant=\\\"bold\\\">1</j:mn></j:mrow><j:mrow><j:mi mathvariant=\\\"monospace\\\">R</j:mi></j:mrow></j:msub><j:mo stretchy=\\\"false\\\">}</j:mo></j:mrow></j:math>, plus their chirality partners under the interchange of chiralities <jb:math xmlns:jb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><jb:mrow><jb:mi mathvariant=\\\"monospace\\\">L</jb:mi></jb:mrow><jb:mo stretchy=\\\"false\\\">↔</jb:mo><jb:mrow><jb:mi mathvariant=\\\"monospace\\\">R</jb:mi></jb:mrow></jb:math>. While half of them have been extensively discussed in the literature, the other half, <ob:math xmlns:ob=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ob:mrow><ob:msub><ob:mrow><ob:mn mathvariant=\\\"bold\\\">6</ob:mn></ob:mrow><ob:mrow><ob:mi mathvariant=\\\"monospace\\\">L</ob:mi><ob:mo stretchy=\\\"false\\\">(</ob:mo><ob:mi mathvariant=\\\"monospace\\\">R</ob:mi><ob:mo stretchy=\\\"false\\\">)</ob:mo></ob:mrow></ob:msub><ob:mo stretchy=\\\"false\\\">⊗</ob:mo><ob:msub><ob:mrow><ob:mn mathvariant=\\\"bold\\\">3</ob:mn></ob:mrow><ob:mrow><ob:mi mathvariant=\\\"monospace\\\">R</ob:mi><ob:mo stretchy=\\\"false\\\">(</ob:mo><ob:mi mathvariant=\\\"monospace\\\">L</ob:mi><ob:mo stretchy=\\\"false\\\">)</ob:mo></ob:mrow></ob:msub></ob:mrow></ob:math> and <bc:math xmlns:bc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><bc:mrow><bc:msub><bc:mrow><bc:mover accent=\\\"true\\\"><bc:mrow><bc:mn mathvariant=\\\"bold\\\">10</bc:mn></bc:mrow><bc:mrow><bc:mo stretchy=\\\"true\\\">¯</bc:mo></bc:mrow></bc:mover></bc:mrow><bc:mrow><bc:mi mathvariant=\\\"monospace\\\">L</bc:mi><bc:mo stretchy=\\\"false\\\">(</bc:mo><bc:mi mathvariant=\\\"monospace\\\">R</bc:mi><bc:mo stretchy=\\\"false\\\">)</bc:mo></bc:mrow></bc:msub><bc:mo stretchy=\\\"false\\\">⊗</bc:mo><bc:msub><bc:mrow><bc:mn mathvariant=\\\"bold\\\">1</bc:mn></bc:mrow><bc:mrow><bc:mi mathvariant=\\\"monospace\\\">R</bc:mi><bc:mo stretchy=\\\"false\\\">(</bc:mo><bc:mi mathvariant=\\\"monospace\\\">L</bc:mi><bc:mo stretchy=\\\"false\\\">)</bc:mo></bc:mrow></bc:msub></bc:mrow></bc:math>, are identified for the first time. We perform chiral matching for these interactions at the leading chiral order and find that each has a unique chiral realization in terms of the octet baryons and pseudoscalars. Notably, the chiral interaction in the <qc:math xmlns:qc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><qc:mrow><qc:msub><qc:mrow><qc:mn mathvariant=\\\"bold\\\">6</qc:mn></qc:mrow><qc:mrow><qc:mi mathvariant=\\\"monospace\\\">L</qc:mi><qc:mo stretchy=\\\"false\\\">(</qc:mo><qc:mi mathvariant=\\\"monospace\\\">R</qc:mi><qc:mo stretchy=\\\"false\\\">)</qc:mo></qc:mrow></qc:msub><qc:mo stretchy=\\\"false\\\">⊗</qc:mo><qc:msub><qc:mrow><qc:mn mathvariant=\\\"bold\\\">3</qc:mn></qc:mrow><qc:mrow><qc:mi mathvariant=\\\"monospace\\\">R</qc:mi><qc:mo stretchy=\\\"false\\\">(</qc:mo><qc:mi mathvariant=\\\"monospace\\\">L</qc:mi><qc:mo stretchy=\\\"false\\\">)</qc:mo></qc:mrow></qc:msub></qc:mrow></qc:math> representation appears at the same chiral order as those of the known ones, while the one in the <dd:math xmlns:dd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><dd:msub><dd:mn mathvariant=\\\"bold\\\">10</dd:mn><dd:mrow><dd:mi mathvariant=\\\"monospace\\\">L</dd:mi><dd:mo stretchy=\\\"false\\\">(</dd:mo><dd:mi mathvariant=\\\"monospace\\\">R</dd:mi><dd:mo stretchy=\\\"false\\\">)</dd:mo></dd:mrow></dd:msub><dd:mo stretchy=\\\"false\\\">⊗</dd:mo><dd:msub><dd:mn mathvariant=\\\"bold\\\">1</dd:mn><dd:mrow><dd:mi mathvariant=\\\"monospace\\\">R</dd:mi><dd:mo stretchy=\\\"false\\\">(</dd:mo><dd:mi mathvariant=\\\"monospace\\\">L</dd:mi><dd:mo stretchy=\\\"false\\\">)</dd:mo></dd:mrow></dd:msub></dd:math> representation appears at a higher chiral order. These new structures are prevalent in effective field theories and ultraviolet models, and they offer novel experimental avenues to search for baryon number violating nucleon decays.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/d8m7-5xxx\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/d8m7-5xxx","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了涉及三个轻夸克而不受导数作用的最一般的核子衰变相互作用。在手性L↔R的交换下,我们确定了对应于QCD的手性群SU(3)L⊗SU(3)R {8L⊗1R,3¯L⊗3R,6L⊗3R,10L⊗1R}中的不可约表示的四个一般算子结构,以及它们的手性伙伴。其中一半已经在文献中被广泛讨论过,另一半是首次发现的6L(R)⊗3R(L)和10¯L(R)⊗1R(L)。我们对这些相互作用进行了手性匹配,并发现每个相互作用在八元重子和伪标量方面都有独特的手性实现。值得注意的是,6L(R)⊗3R(L)表示中的手性相互作用与已知的手性相互作用具有相同的手性顺序,而10L(R)⊗1R(L)表示中的手性相互作用具有更高的手性顺序。这些新结构普遍存在于有效场论和紫外模型中,为寻找重子数违反核子衰变提供了新的实验途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Chiral Structures for Baryon Number Violating Nucleon Decays
We examine the most general nucleon decay interactions that involve three light quarks without being acted upon by a derivative. We identify four generic operator structures that correspond to the irreducible representations in the chiral group SU(3)L⊗SU(3)R of QCD, {8L1R,3¯L3R,6L3R,10L1R}, plus their chirality partners under the interchange of chiralities LR. While half of them have been extensively discussed in the literature, the other half, 6L(R)3R(L) and 10¯L(R)1R(L), are identified for the first time. We perform chiral matching for these interactions at the leading chiral order and find that each has a unique chiral realization in terms of the octet baryons and pseudoscalars. Notably, the chiral interaction in the 6L(R)3R(L) representation appears at the same chiral order as those of the known ones, while the one in the 10L(R)1R(L) representation appears at a higher chiral order. These new structures are prevalent in effective field theories and ultraviolet models, and they offer novel experimental avenues to search for baryon number violating nucleon decays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信