{"title":"次最小三态MSSM中的轻子味违反和对(g−2)μ的两回电弱修正","authors":"Zhao-Yang Zhang","doi":"10.1103/x7sb-n9lw","DOIUrl":null,"url":null,"abstract":"In the Standard Model (SM), charged lepton flavor-violating (LFV) processes are strictly forbidden, and thus observation of LFV would signal the presence of new physics. Recently, the Muon g</a:mi>−</a:mo>2</a:mn></a:math> Collaboration at Fermilab reported their final result for the muon magnetic dipole moment (MDM), which is now consistent with the latest SM prediction at the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mn>1</c:mn><c:mi>σ</c:mi></c:math> level. This imposes a significant constraint on new-physics contributions to <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mo stretchy=\"false\">(</e:mo><e:mi>g</e:mi><e:mo>−</e:mo><e:mn>2</e:mn><e:msub><e:mo stretchy=\"false\">)</e:mo><e:mi>μ</e:mi></e:msub></e:math>. In this work, we study the LFV processes <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msubsup><i:mo>ℓ</i:mo><i:mi>j</i:mi><i:mo>−</i:mo></i:msubsup><i:mo stretchy=\"false\">→</i:mo><i:msubsup><i:mo>ℓ</i:mo><i:mi>i</i:mi><i:mo>−</i:mo></i:msubsup><i:mi>γ</i:mi></i:math> and <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msubsup><l:mo>ℓ</l:mo><l:mi>j</l:mi><l:mo>−</l:mo></l:msubsup><l:mo stretchy=\"false\">→</l:mo><l:msubsup><l:mo>ℓ</l:mo><l:mi>i</l:mi><l:mo>−</l:mo></l:msubsup><l:msubsup><l:mo>ℓ</l:mo><l:mi>i</l:mi><l:mo>−</l:mo></l:msubsup><l:msubsup><l:mo>ℓ</l:mo><l:mi>i</l:mi><l:mo>+</l:mo></l:msubsup></l:math> within the framework of the triplet next-to-minimal supersymmetric standard model (TNMSSM). We include two-loop contributions to the muon MDM and investigate the resulting constraints on the model parameter space. Our numerical analysis shows that, in the TNMSSM, doubly charged Higgs bosons and the couplings <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msub><o:mi>Y</o:mi><o:mi>L</o:mi></o:msub></o:math> and <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>Y</q:mi><q:mi>D</q:mi></q:msub></q:math> associated with the type-I+II seesaw mechanism play a crucial role in both LFV processes and the muon MDM. Moreover, two-loop electroweak corrections have a significant impact on the muon MDM in this framework.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"54 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lepton-flavor violation and two loop electroweak corrections to (g−2)μ in the triplets next-to-minimal MSSM\",\"authors\":\"Zhao-Yang Zhang\",\"doi\":\"10.1103/x7sb-n9lw\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Standard Model (SM), charged lepton flavor-violating (LFV) processes are strictly forbidden, and thus observation of LFV would signal the presence of new physics. Recently, the Muon g</a:mi>−</a:mo>2</a:mn></a:math> Collaboration at Fermilab reported their final result for the muon magnetic dipole moment (MDM), which is now consistent with the latest SM prediction at the <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mn>1</c:mn><c:mi>σ</c:mi></c:math> level. This imposes a significant constraint on new-physics contributions to <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mo stretchy=\\\"false\\\">(</e:mo><e:mi>g</e:mi><e:mo>−</e:mo><e:mn>2</e:mn><e:msub><e:mo stretchy=\\\"false\\\">)</e:mo><e:mi>μ</e:mi></e:msub></e:math>. In this work, we study the LFV processes <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msubsup><i:mo>ℓ</i:mo><i:mi>j</i:mi><i:mo>−</i:mo></i:msubsup><i:mo stretchy=\\\"false\\\">→</i:mo><i:msubsup><i:mo>ℓ</i:mo><i:mi>i</i:mi><i:mo>−</i:mo></i:msubsup><i:mi>γ</i:mi></i:math> and <l:math xmlns:l=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><l:msubsup><l:mo>ℓ</l:mo><l:mi>j</l:mi><l:mo>−</l:mo></l:msubsup><l:mo stretchy=\\\"false\\\">→</l:mo><l:msubsup><l:mo>ℓ</l:mo><l:mi>i</l:mi><l:mo>−</l:mo></l:msubsup><l:msubsup><l:mo>ℓ</l:mo><l:mi>i</l:mi><l:mo>−</l:mo></l:msubsup><l:msubsup><l:mo>ℓ</l:mo><l:mi>i</l:mi><l:mo>+</l:mo></l:msubsup></l:math> within the framework of the triplet next-to-minimal supersymmetric standard model (TNMSSM). We include two-loop contributions to the muon MDM and investigate the resulting constraints on the model parameter space. Our numerical analysis shows that, in the TNMSSM, doubly charged Higgs bosons and the couplings <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:msub><o:mi>Y</o:mi><o:mi>L</o:mi></o:msub></o:math> and <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:msub><q:mi>Y</q:mi><q:mi>D</q:mi></q:msub></q:math> associated with the type-I+II seesaw mechanism play a crucial role in both LFV processes and the muon MDM. Moreover, two-loop electroweak corrections have a significant impact on the muon MDM in this framework.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/x7sb-n9lw\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/x7sb-n9lw","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Lepton-flavor violation and two loop electroweak corrections to (g−2)μ in the triplets next-to-minimal MSSM
In the Standard Model (SM), charged lepton flavor-violating (LFV) processes are strictly forbidden, and thus observation of LFV would signal the presence of new physics. Recently, the Muon g−2 Collaboration at Fermilab reported their final result for the muon magnetic dipole moment (MDM), which is now consistent with the latest SM prediction at the 1σ level. This imposes a significant constraint on new-physics contributions to (g−2)μ. In this work, we study the LFV processes ℓj−→ℓi−γ and ℓj−→ℓi−ℓi−ℓi+ within the framework of the triplet next-to-minimal supersymmetric standard model (TNMSSM). We include two-loop contributions to the muon MDM and investigate the resulting constraints on the model parameter space. Our numerical analysis shows that, in the TNMSSM, doubly charged Higgs bosons and the couplings YL and YD associated with the type-I+II seesaw mechanism play a crucial role in both LFV processes and the muon MDM. Moreover, two-loop electroweak corrections have a significant impact on the muon MDM in this framework.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.