耐腐蚀海水分解阳极Co2(OH)3Cl和Ni2(OH)3Cl的稳定性、电子性质和协同光电催化活性:基于连续介质溶剂化模型的恒电位动力学

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jiahao Zhang , Chen Kang , Junfeng Dong , Junfeng Ren , Meina Chen , Zijing Lin
{"title":"耐腐蚀海水分解阳极Co2(OH)3Cl和Ni2(OH)3Cl的稳定性、电子性质和协同光电催化活性:基于连续介质溶剂化模型的恒电位动力学","authors":"Jiahao Zhang ,&nbsp;Chen Kang ,&nbsp;Junfeng Dong ,&nbsp;Junfeng Ren ,&nbsp;Meina Chen ,&nbsp;Zijing Lin","doi":"10.1016/j.apsusc.2025.164843","DOIUrl":null,"url":null,"abstract":"<div><div>While photoelectrocatalysis excels in freshwater splitting, seawater environments introduce severe challenges (anode corrosion and competing reactions). In this paper, we investigated synergistic photoelectrocatalysis of seawater splitting catalysts Co<sub>2</sub>(OH)<sub>3</sub>Cl and Ni<sub>2</sub>(OH)<sub>3</sub>Cl based on the constant-potential dynamics via continuum solvation models for the first time. Results indicated that: (1) Both compounds are direct band gap semiconductors with UV–Vis light absorption suitable for water splitting.; (2) Thermodynamic alignment of the conduction band minimum (CBM) enables spontaneous hydrogen evolution reaction (HER), while the oxygen evolution reaction (OER) activation necessitates anodic biases (1.12 V/0.84 V for Co<sub>2</sub>(OH)<sub>3</sub>Cl/Ni<sub>2</sub>(OH)<sub>3</sub>Cl); (3) OER overpotential (Ni<sub>2</sub>(OH)<sub>3</sub>Cl 0.48 V &lt; Co<sub>2</sub>(OH)<sub>3</sub>Cl 0.76 V) are both lower than the chlorine evolution reaction (CER) overpotential (1.62 V/1.82 V), suppressing side reactions and enhancing corrosion resistance. Practical stability calculations employed multifaceted approaches: thermodynamic (negative cohesive energy: −0.631/−0.376 eV/atom), mechanical, dynamic, and thermal stability. Our findings facilitate the development of synergistic photoelectrocatalysis for seawater splitting.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"718 ","pages":"Article 164843"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability, electronic properties, and synergistic photoelectrocatalytic activity in corrosion-resistant seawater-splitting anodes Co2(OH)3Cl and Ni2(OH)3Cl: constant-potential dynamics via continuum solvation models\",\"authors\":\"Jiahao Zhang ,&nbsp;Chen Kang ,&nbsp;Junfeng Dong ,&nbsp;Junfeng Ren ,&nbsp;Meina Chen ,&nbsp;Zijing Lin\",\"doi\":\"10.1016/j.apsusc.2025.164843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While photoelectrocatalysis excels in freshwater splitting, seawater environments introduce severe challenges (anode corrosion and competing reactions). In this paper, we investigated synergistic photoelectrocatalysis of seawater splitting catalysts Co<sub>2</sub>(OH)<sub>3</sub>Cl and Ni<sub>2</sub>(OH)<sub>3</sub>Cl based on the constant-potential dynamics via continuum solvation models for the first time. Results indicated that: (1) Both compounds are direct band gap semiconductors with UV–Vis light absorption suitable for water splitting.; (2) Thermodynamic alignment of the conduction band minimum (CBM) enables spontaneous hydrogen evolution reaction (HER), while the oxygen evolution reaction (OER) activation necessitates anodic biases (1.12 V/0.84 V for Co<sub>2</sub>(OH)<sub>3</sub>Cl/Ni<sub>2</sub>(OH)<sub>3</sub>Cl); (3) OER overpotential (Ni<sub>2</sub>(OH)<sub>3</sub>Cl 0.48 V &lt; Co<sub>2</sub>(OH)<sub>3</sub>Cl 0.76 V) are both lower than the chlorine evolution reaction (CER) overpotential (1.62 V/1.82 V), suppressing side reactions and enhancing corrosion resistance. Practical stability calculations employed multifaceted approaches: thermodynamic (negative cohesive energy: −0.631/−0.376 eV/atom), mechanical, dynamic, and thermal stability. Our findings facilitate the development of synergistic photoelectrocatalysis for seawater splitting.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"718 \",\"pages\":\"Article 164843\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225025590\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225025590","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然光电催化在淡水分裂中表现出色,但海水环境带来了严峻的挑战(阳极腐蚀和竞争反应)。本文首次采用连续溶剂化模型,基于等势动力学研究了海水裂解催化剂Co2(OH)3Cl和Ni2(OH)3Cl的协同光电催化作用。结果表明:(1)两种化合物均为直接带隙半导体,具有紫外-可见光吸收特性,适于水分解;(2)导带最小值(CBM)的热力学取向使自发析氢反应(HER)成为可能,而析氧反应(OER)的激活需要阳极偏置(Co2(OH)3Cl/Ni2(OH)3Cl为1.12 V/0.84 V);(3) OER过电位(Ni2(OH)3Cl 0.48 V < Co2(OH)3Cl 0.76 V)均低于析氯反应(CER)过电位(1.62 V/1.82 V),抑制了副反应,增强了耐蚀性。实际稳定性计算采用多方面的方法:热力学(负内聚能:−0.631/−0.376 eV/原子),机械,动态和热稳定性。我们的发现促进了海水分裂的协同光电催化的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability, electronic properties, and synergistic photoelectrocatalytic activity in corrosion-resistant seawater-splitting anodes Co2(OH)3Cl and Ni2(OH)3Cl: constant-potential dynamics via continuum solvation models

Stability, electronic properties, and synergistic photoelectrocatalytic activity in corrosion-resistant seawater-splitting anodes Co2(OH)3Cl and Ni2(OH)3Cl: constant-potential dynamics via continuum solvation models

Stability, electronic properties, and synergistic photoelectrocatalytic activity in corrosion-resistant seawater-splitting anodes Co2(OH)3Cl and Ni2(OH)3Cl: constant-potential dynamics via continuum solvation models
While photoelectrocatalysis excels in freshwater splitting, seawater environments introduce severe challenges (anode corrosion and competing reactions). In this paper, we investigated synergistic photoelectrocatalysis of seawater splitting catalysts Co2(OH)3Cl and Ni2(OH)3Cl based on the constant-potential dynamics via continuum solvation models for the first time. Results indicated that: (1) Both compounds are direct band gap semiconductors with UV–Vis light absorption suitable for water splitting.; (2) Thermodynamic alignment of the conduction band minimum (CBM) enables spontaneous hydrogen evolution reaction (HER), while the oxygen evolution reaction (OER) activation necessitates anodic biases (1.12 V/0.84 V for Co2(OH)3Cl/Ni2(OH)3Cl); (3) OER overpotential (Ni2(OH)3Cl 0.48 V < Co2(OH)3Cl 0.76 V) are both lower than the chlorine evolution reaction (CER) overpotential (1.62 V/1.82 V), suppressing side reactions and enhancing corrosion resistance. Practical stability calculations employed multifaceted approaches: thermodynamic (negative cohesive energy: −0.631/−0.376 eV/atom), mechanical, dynamic, and thermal stability. Our findings facilitate the development of synergistic photoelectrocatalysis for seawater splitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信