数字双胞胎学习健康系统和多模态生物标志物改变了疼痛护理。

IF 5.5 1区 医学 Q1 ANESTHESIOLOGY
Sean Mackey,Beth Darnall,Ming-Chih Kao
{"title":"数字双胞胎学习健康系统和多模态生物标志物改变了疼痛护理。","authors":"Sean Mackey,Beth Darnall,Ming-Chih Kao","doi":"10.1097/j.pain.0000000000003779","DOIUrl":null,"url":null,"abstract":"Despite scientific advances, pain care remains fragmented, inaccessible, and imprecise. We propose a future in which Digital Twin Learning Health Systems (DT-LHS) transform pain management by integrating multimodal biomarkers, real-time data streams, and adaptive learning loops to personalize care. These systems simulate individual trajectories, forecast treatment responses, and update continuously based on outcomes. CHOIR, an open-source informatics platform, operationalizes this vision, turning routine clinical care into a scalable, continuously improving experiment. By merging biological insight with dynamic modeling and real-world feedback, DT-LHS offers a path toward truly personalized, responsive, accessible, and equitable pain care.","PeriodicalId":19921,"journal":{"name":"PAIN®","volume":"1 1","pages":"S106-S110"},"PeriodicalIF":5.5000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital twin learning health systems and multimodal biomarkers transform pain care.\",\"authors\":\"Sean Mackey,Beth Darnall,Ming-Chih Kao\",\"doi\":\"10.1097/j.pain.0000000000003779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite scientific advances, pain care remains fragmented, inaccessible, and imprecise. We propose a future in which Digital Twin Learning Health Systems (DT-LHS) transform pain management by integrating multimodal biomarkers, real-time data streams, and adaptive learning loops to personalize care. These systems simulate individual trajectories, forecast treatment responses, and update continuously based on outcomes. CHOIR, an open-source informatics platform, operationalizes this vision, turning routine clinical care into a scalable, continuously improving experiment. By merging biological insight with dynamic modeling and real-world feedback, DT-LHS offers a path toward truly personalized, responsive, accessible, and equitable pain care.\",\"PeriodicalId\":19921,\"journal\":{\"name\":\"PAIN®\",\"volume\":\"1 1\",\"pages\":\"S106-S110\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PAIN®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/j.pain.0000000000003779\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAIN®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.pain.0000000000003779","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管科学进步了,但疼痛护理仍然是碎片化的、难以获得的和不精确的。我们提出了一个未来,数字双胞胎学习健康系统(DT-LHS)通过整合多模态生物标志物、实时数据流和自适应学习循环来实现个性化护理,从而改变疼痛管理。这些系统模拟个体轨迹,预测治疗反应,并根据结果不断更新。CHOIR是一个开源的信息平台,它实现了这一愿景,将常规的临床护理转变为可扩展的、不断改进的实验。通过将生物学洞察力与动态建模和现实世界的反馈相结合,DT-LHS为真正个性化,响应性,可访问性和公平的疼痛护理提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital twin learning health systems and multimodal biomarkers transform pain care.
Despite scientific advances, pain care remains fragmented, inaccessible, and imprecise. We propose a future in which Digital Twin Learning Health Systems (DT-LHS) transform pain management by integrating multimodal biomarkers, real-time data streams, and adaptive learning loops to personalize care. These systems simulate individual trajectories, forecast treatment responses, and update continuously based on outcomes. CHOIR, an open-source informatics platform, operationalizes this vision, turning routine clinical care into a scalable, continuously improving experiment. By merging biological insight with dynamic modeling and real-world feedback, DT-LHS offers a path toward truly personalized, responsive, accessible, and equitable pain care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PAIN®
PAIN® 医学-临床神经学
CiteScore
12.50
自引率
8.10%
发文量
242
审稿时长
9 months
期刊介绍: PAIN® is the official publication of the International Association for the Study of Pain and publishes original research on the nature,mechanisms and treatment of pain.PAIN® provides a forum for the dissemination of research in the basic and clinical sciences of multidisciplinary interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信