聚合物供体模块化设计对有机太阳能电池溶液聚集和拉伸性能的影响。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuanang Luo,Xinrui Liu,Youran Lin,Mingke Li,Zhiyuan Yang,Zhihui Xiong,Yang Wang,Feng Peng,Wenkai Zhong,Ning Li,Lei Ying
{"title":"聚合物供体模块化设计对有机太阳能电池溶液聚集和拉伸性能的影响。","authors":"Xuanang Luo,Xinrui Liu,Youran Lin,Mingke Li,Zhiyuan Yang,Zhihui Xiong,Yang Wang,Feng Peng,Wenkai Zhong,Ning Li,Lei Ying","doi":"10.1002/anie.202514985","DOIUrl":null,"url":null,"abstract":"The use of nonhalogenated solvents in organic solar cell (OSC) manufacturing is crucial for environmental sustainability but remains hindered by difficulties in achieving optimal thin-film morphologies. In particular, controlling solution-state aggregation to form well-defined fibrillar networks that enable high device performance is a central challenge. Here, we present a modular molecular design strategy based on the PTzBI polymer platform, enabling simultaneous tuning of energy levels, crystalline packing, and chain flexibility to address this limitation. The resulting polymer, PTzBI-dF-Si, integrates a fluorinated backbone and siloxane-terminated side chains, showing balanced solubility and controlled solution-state aggregation in o-xylene. These network-like solution aggregates translate into enhanced molecular crystallinity and a well-organized fibrillar morphology in the solid film. The corresponding PTzBI-dF-Si:L8-BO blends achieve a power conversion efficiency (PCE) of 19.9% in rigid OSCs. Moreover, PTzBI-dF-Si exhibits ductile deformation with a fracture strain of ∼20%, leading to intrinsically stretchable OSCs with a PCE over 16%, retaining >80% of the initial PCE under 40% strain. These results highlight the promise of rational, modular polymer design in advancing nonhalogenated-solvent processed, high-efficiency, and mechanically robust OSCs for scalable and wearable electronic applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"102 1","pages":"e202514985"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Design of Polymer Donors Regulates Solution Aggregation and Stretchability of Organic Solar Cells.\",\"authors\":\"Xuanang Luo,Xinrui Liu,Youran Lin,Mingke Li,Zhiyuan Yang,Zhihui Xiong,Yang Wang,Feng Peng,Wenkai Zhong,Ning Li,Lei Ying\",\"doi\":\"10.1002/anie.202514985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of nonhalogenated solvents in organic solar cell (OSC) manufacturing is crucial for environmental sustainability but remains hindered by difficulties in achieving optimal thin-film morphologies. In particular, controlling solution-state aggregation to form well-defined fibrillar networks that enable high device performance is a central challenge. Here, we present a modular molecular design strategy based on the PTzBI polymer platform, enabling simultaneous tuning of energy levels, crystalline packing, and chain flexibility to address this limitation. The resulting polymer, PTzBI-dF-Si, integrates a fluorinated backbone and siloxane-terminated side chains, showing balanced solubility and controlled solution-state aggregation in o-xylene. These network-like solution aggregates translate into enhanced molecular crystallinity and a well-organized fibrillar morphology in the solid film. The corresponding PTzBI-dF-Si:L8-BO blends achieve a power conversion efficiency (PCE) of 19.9% in rigid OSCs. Moreover, PTzBI-dF-Si exhibits ductile deformation with a fracture strain of ∼20%, leading to intrinsically stretchable OSCs with a PCE over 16%, retaining >80% of the initial PCE under 40% strain. These results highlight the promise of rational, modular polymer design in advancing nonhalogenated-solvent processed, high-efficiency, and mechanically robust OSCs for scalable and wearable electronic applications.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"102 1\",\"pages\":\"e202514985\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202514985\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202514985","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在有机太阳能电池(OSC)制造中使用非卤化溶剂对环境可持续性至关重要,但由于难以实现最佳薄膜形态而受到阻碍。特别是,控制解决方案状态聚合以形成定义良好的纤维网络以实现高设备性能是一个核心挑战。在这里,我们提出了一种基于PTzBI聚合物平台的模块化分子设计策略,可以同时调整能级、晶体包装和链的灵活性,以解决这一限制。所得聚合物PTzBI-dF-Si集成了氟化骨架和硅氧烷端侧链,在邻二甲苯中表现出平衡的溶解度和受控的溶液态聚集。这些网状的溶液聚集体转化为增强的分子结晶度和固体膜中组织良好的纤维状形态。相应的PTzBI-dF-Si:L8-BO共混物在刚性OSCs中的功率转换效率(PCE)为19.9%。此外,PTzBI-dF-Si在断裂应变为~ 20%时表现出延性变形,导致PCE超过16%的内在可拉伸osc,在40%应变下保持初始PCE的bbb80 %。这些结果强调了合理、模块化的聚合物设计在推进非卤化溶剂加工、高效、机械坚固的OSCs方面的前景,适用于可扩展和可穿戴电子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular Design of Polymer Donors Regulates Solution Aggregation and Stretchability of Organic Solar Cells.
The use of nonhalogenated solvents in organic solar cell (OSC) manufacturing is crucial for environmental sustainability but remains hindered by difficulties in achieving optimal thin-film morphologies. In particular, controlling solution-state aggregation to form well-defined fibrillar networks that enable high device performance is a central challenge. Here, we present a modular molecular design strategy based on the PTzBI polymer platform, enabling simultaneous tuning of energy levels, crystalline packing, and chain flexibility to address this limitation. The resulting polymer, PTzBI-dF-Si, integrates a fluorinated backbone and siloxane-terminated side chains, showing balanced solubility and controlled solution-state aggregation in o-xylene. These network-like solution aggregates translate into enhanced molecular crystallinity and a well-organized fibrillar morphology in the solid film. The corresponding PTzBI-dF-Si:L8-BO blends achieve a power conversion efficiency (PCE) of 19.9% in rigid OSCs. Moreover, PTzBI-dF-Si exhibits ductile deformation with a fracture strain of ∼20%, leading to intrinsically stretchable OSCs with a PCE over 16%, retaining >80% of the initial PCE under 40% strain. These results highlight the promise of rational, modular polymer design in advancing nonhalogenated-solvent processed, high-efficiency, and mechanically robust OSCs for scalable and wearable electronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信