Tae Hoon Lee,Pablo A Dean,Jing Ying Yeo,Zachary P Smith
{"title":"[4+4]环加成用于膜气体分离的可溶液处理阶梯支化聚酰亚胺。","authors":"Tae Hoon Lee,Pablo A Dean,Jing Ying Yeo,Zachary P Smith","doi":"10.1002/adma.202513892","DOIUrl":null,"url":null,"abstract":"Advancements in membrane-based gas separation have the potential to address global challenges related to energy and the environment. However, new membrane materials must have excellent separation performance, stability, and processability, and simultaneously achieving all three metrics is extremely challenging. To circumvent these issues, a post-synthetic modification of polyimides of intrinsic microporosity (PIM-PIs) synthesized with a UV light (UV)-reactive anthracene co-monomer is reported. UV irradiation on the PIM-PI solution converts the anthracene units into dianthracene linkages by [4+4] cycloaddition, while the resultant PIM-PI is still solution-processable due to the branched structure. The ladder-like dianthracene moieties significantly increased both microporosity (<20 Å) and ultramicroporosity (<7 Å) of the precursor PIM-PI. Notably, the UV-treated PIM-PI membrane exhibits a large boost in pure-gas CO2 permeability by up to 260%, reaching 376 barrer, while maintaining CO2/CH4 ideal selectivity of 35 at 1 bar. Moreover, the developed membrane material has enhanced stability against physical aging and plasticization and showcases excellent CO2/CH4 mixed-gas selectivity (>30 up to 31 bar feed pressure), which surpasses the 2018 mixed-gas upper bound.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"1 1","pages":"e13892"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution-Processable, Ladder-Branched Polyimides of Intrinsic Microporosity by [4+4] Cycloaddition for Membrane Gas Separation.\",\"authors\":\"Tae Hoon Lee,Pablo A Dean,Jing Ying Yeo,Zachary P Smith\",\"doi\":\"10.1002/adma.202513892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in membrane-based gas separation have the potential to address global challenges related to energy and the environment. However, new membrane materials must have excellent separation performance, stability, and processability, and simultaneously achieving all three metrics is extremely challenging. To circumvent these issues, a post-synthetic modification of polyimides of intrinsic microporosity (PIM-PIs) synthesized with a UV light (UV)-reactive anthracene co-monomer is reported. UV irradiation on the PIM-PI solution converts the anthracene units into dianthracene linkages by [4+4] cycloaddition, while the resultant PIM-PI is still solution-processable due to the branched structure. The ladder-like dianthracene moieties significantly increased both microporosity (<20 Å) and ultramicroporosity (<7 Å) of the precursor PIM-PI. Notably, the UV-treated PIM-PI membrane exhibits a large boost in pure-gas CO2 permeability by up to 260%, reaching 376 barrer, while maintaining CO2/CH4 ideal selectivity of 35 at 1 bar. Moreover, the developed membrane material has enhanced stability against physical aging and plasticization and showcases excellent CO2/CH4 mixed-gas selectivity (>30 up to 31 bar feed pressure), which surpasses the 2018 mixed-gas upper bound.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"1 1\",\"pages\":\"e13892\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202513892\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202513892","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solution-Processable, Ladder-Branched Polyimides of Intrinsic Microporosity by [4+4] Cycloaddition for Membrane Gas Separation.
Advancements in membrane-based gas separation have the potential to address global challenges related to energy and the environment. However, new membrane materials must have excellent separation performance, stability, and processability, and simultaneously achieving all three metrics is extremely challenging. To circumvent these issues, a post-synthetic modification of polyimides of intrinsic microporosity (PIM-PIs) synthesized with a UV light (UV)-reactive anthracene co-monomer is reported. UV irradiation on the PIM-PI solution converts the anthracene units into dianthracene linkages by [4+4] cycloaddition, while the resultant PIM-PI is still solution-processable due to the branched structure. The ladder-like dianthracene moieties significantly increased both microporosity (<20 Å) and ultramicroporosity (<7 Å) of the precursor PIM-PI. Notably, the UV-treated PIM-PI membrane exhibits a large boost in pure-gas CO2 permeability by up to 260%, reaching 376 barrer, while maintaining CO2/CH4 ideal selectivity of 35 at 1 bar. Moreover, the developed membrane material has enhanced stability against physical aging and plasticization and showcases excellent CO2/CH4 mixed-gas selectivity (>30 up to 31 bar feed pressure), which surpasses the 2018 mixed-gas upper bound.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.