固态电解质膜的原位聚合物集成金属-有机框架。

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Hong-Bin Luo,Wen-Ze Chen,Yu-Hua Mo,Jia-Liang Gao,Guo-Qin Zhang,Yuan-Bo Tong,Dong-Qiang Cao,Xiao-Ming Ren
{"title":"固态电解质膜的原位聚合物集成金属-有机框架。","authors":"Hong-Bin Luo,Wen-Ze Chen,Yu-Hua Mo,Jia-Liang Gao,Guo-Qin Zhang,Yuan-Bo Tong,Dong-Qiang Cao,Xiao-Ming Ren","doi":"10.1021/acs.inorgchem.5c04173","DOIUrl":null,"url":null,"abstract":"Solid-state lithium metal batteries hold great promise for energy storage by addressing the limited cycle life and safety issues inherent in liquid electrolyte systems. Nevertheless, the development of efficient solid-state electrolytes remains a significant challenge. In this work, we present an electrolyte membrane fabricated through the integration of metal-organic frameworks (MOFs) by in situ-formed polymer chains. Specifically, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is employed to initiate the in situ polymerization of N,N-dimethylacrylamide within MOFs. The resulting polymer chains not only interconnect MOF particles to form a composite electrolyte membrane but also provide continuous ion-conductive paths for Li+ transport. Meanwhile, the confinement within the MOF channels restricts the mobility of bulky TFSI- anions. As a result, the composite electrolyte membrane achieves a high room-temperature ionic conductivity exceeding 10-4 S·cm-1, a remarkable Li+ transference number of 0.77, and a broad electrochemical stability window up to 5.67 V. Furthermore, the electrolyte membrane demonstrates excellent interfacial compatibility with the lithium metal, effectively inhibiting dendrite growth. When applied in lithium metal batteries, it enables a specific capacity of 124.2 mAh·g-1 at 1.0 C, a high Coulombic efficiency of 99.5%, and outstanding rate performance.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"95 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Polymer-Integrated Metal-Organic Framework for Solid-State Electrolyte Membrane.\",\"authors\":\"Hong-Bin Luo,Wen-Ze Chen,Yu-Hua Mo,Jia-Liang Gao,Guo-Qin Zhang,Yuan-Bo Tong,Dong-Qiang Cao,Xiao-Ming Ren\",\"doi\":\"10.1021/acs.inorgchem.5c04173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state lithium metal batteries hold great promise for energy storage by addressing the limited cycle life and safety issues inherent in liquid electrolyte systems. Nevertheless, the development of efficient solid-state electrolytes remains a significant challenge. In this work, we present an electrolyte membrane fabricated through the integration of metal-organic frameworks (MOFs) by in situ-formed polymer chains. Specifically, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is employed to initiate the in situ polymerization of N,N-dimethylacrylamide within MOFs. The resulting polymer chains not only interconnect MOF particles to form a composite electrolyte membrane but also provide continuous ion-conductive paths for Li+ transport. Meanwhile, the confinement within the MOF channels restricts the mobility of bulky TFSI- anions. As a result, the composite electrolyte membrane achieves a high room-temperature ionic conductivity exceeding 10-4 S·cm-1, a remarkable Li+ transference number of 0.77, and a broad electrochemical stability window up to 5.67 V. Furthermore, the electrolyte membrane demonstrates excellent interfacial compatibility with the lithium metal, effectively inhibiting dendrite growth. When applied in lithium metal batteries, it enables a specific capacity of 124.2 mAh·g-1 at 1.0 C, a high Coulombic efficiency of 99.5%, and outstanding rate performance.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c04173\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c04173","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

固态锂金属电池通过解决液体电解质系统固有的有限循环寿命和安全问题,在能量存储方面具有很大的前景。然而,高效固态电解质的开发仍然是一个重大挑战。在这项工作中,我们提出了一种通过原位形成的聚合物链集成金属有机框架(MOFs)制备的电解质膜。具体来说,锂二(三氟甲烷磺酰)亚胺(LiTFSI)被用来引发N,N-二甲基丙烯酰胺在mof内的原位聚合。所得到的聚合物链不仅将MOF颗粒互连形成复合电解质膜,而且还为Li+的传输提供了连续的离子导电路径。同时,MOF通道内的约束限制了体积较大的TFSI-阴离子的迁移。结果表明,复合电解质膜具有超过10-4 S·cm-1的高室温离子电导率、0.77的Li+转移数和5.67 V的宽电化学稳定窗。此外,电解质膜与锂金属具有良好的界面相容性,有效地抑制了枝晶的生长。应用于锂金属电池时,1.0℃时的比容量可达124.2 mAh·g-1,库仑效率高达99.5%,倍率性能优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Situ Polymer-Integrated Metal-Organic Framework for Solid-State Electrolyte Membrane.
Solid-state lithium metal batteries hold great promise for energy storage by addressing the limited cycle life and safety issues inherent in liquid electrolyte systems. Nevertheless, the development of efficient solid-state electrolytes remains a significant challenge. In this work, we present an electrolyte membrane fabricated through the integration of metal-organic frameworks (MOFs) by in situ-formed polymer chains. Specifically, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is employed to initiate the in situ polymerization of N,N-dimethylacrylamide within MOFs. The resulting polymer chains not only interconnect MOF particles to form a composite electrolyte membrane but also provide continuous ion-conductive paths for Li+ transport. Meanwhile, the confinement within the MOF channels restricts the mobility of bulky TFSI- anions. As a result, the composite electrolyte membrane achieves a high room-temperature ionic conductivity exceeding 10-4 S·cm-1, a remarkable Li+ transference number of 0.77, and a broad electrochemical stability window up to 5.67 V. Furthermore, the electrolyte membrane demonstrates excellent interfacial compatibility with the lithium metal, effectively inhibiting dendrite growth. When applied in lithium metal batteries, it enables a specific capacity of 124.2 mAh·g-1 at 1.0 C, a high Coulombic efficiency of 99.5%, and outstanding rate performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信