Yuval B Simons, Hakhamanesh Mostafavi, Huisheng Zhu, Courtney J Smith, Jonathan K Pritchard, Guy Sella
{"title":"简单的标度定律控制着人类复杂性状的遗传结构。","authors":"Yuval B Simons, Hakhamanesh Mostafavi, Huisheng Zhu, Courtney J Smith, Jonathan K Pritchard, Guy Sella","doi":"10.1371/journal.pbio.3003402","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies have revealed that the genetic architectures of complex traits vary widely, including in terms of the numbers, effect sizes, and allele frequencies of significant hits. However, at present we lack a principled way of understanding the similarities and differences among traits. Here, we describe a probabilistic model that combines the effects of mutation, drift, and stabilizing selection at individual sites with a genome-scale model of phenotypic variation. In this model, the architecture of a trait arises from the distribution of selection coefficients of mutations and from two scaling parameters. We fit this model for 95 highly polygenic quantitative traits of different kinds from the UK Biobank. Notably, we infer that all these traits have fairly similar, though not identical, distributions of selection coefficients. This similarity suggests that differences in architectures of highly polygenic traits arise mainly from the two scaling parameters: the mutational target size and heritability per site, which vary by orders of magnitude among traits. When these two scale factors are accounted for, we find that the architectures of all 95 traits are very similar.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 10","pages":"e3003402"},"PeriodicalIF":7.2000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517483/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simple scaling laws control the genetic architectures of human complex traits.\",\"authors\":\"Yuval B Simons, Hakhamanesh Mostafavi, Huisheng Zhu, Courtney J Smith, Jonathan K Pritchard, Guy Sella\",\"doi\":\"10.1371/journal.pbio.3003402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies have revealed that the genetic architectures of complex traits vary widely, including in terms of the numbers, effect sizes, and allele frequencies of significant hits. However, at present we lack a principled way of understanding the similarities and differences among traits. Here, we describe a probabilistic model that combines the effects of mutation, drift, and stabilizing selection at individual sites with a genome-scale model of phenotypic variation. In this model, the architecture of a trait arises from the distribution of selection coefficients of mutations and from two scaling parameters. We fit this model for 95 highly polygenic quantitative traits of different kinds from the UK Biobank. Notably, we infer that all these traits have fairly similar, though not identical, distributions of selection coefficients. This similarity suggests that differences in architectures of highly polygenic traits arise mainly from the two scaling parameters: the mutational target size and heritability per site, which vary by orders of magnitude among traits. When these two scale factors are accounted for, we find that the architectures of all 95 traits are very similar.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 10\",\"pages\":\"e3003402\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003402\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003402","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Simple scaling laws control the genetic architectures of human complex traits.
Genome-wide association studies have revealed that the genetic architectures of complex traits vary widely, including in terms of the numbers, effect sizes, and allele frequencies of significant hits. However, at present we lack a principled way of understanding the similarities and differences among traits. Here, we describe a probabilistic model that combines the effects of mutation, drift, and stabilizing selection at individual sites with a genome-scale model of phenotypic variation. In this model, the architecture of a trait arises from the distribution of selection coefficients of mutations and from two scaling parameters. We fit this model for 95 highly polygenic quantitative traits of different kinds from the UK Biobank. Notably, we infer that all these traits have fairly similar, though not identical, distributions of selection coefficients. This similarity suggests that differences in architectures of highly polygenic traits arise mainly from the two scaling parameters: the mutational target size and heritability per site, which vary by orders of magnitude among traits. When these two scale factors are accounted for, we find that the architectures of all 95 traits are very similar.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.