芽殖酵母细胞周期依赖过程的操作与分析。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Michael G Stewart, Talia C Scheel, Ahmed A Abouelghar, Sara E Hoppe, Matthew P Miller
{"title":"芽殖酵母细胞周期依赖过程的操作与分析。","authors":"Michael G Stewart, Talia C Scheel, Ahmed A Abouelghar, Sara E Hoppe, Matthew P Miller","doi":"10.3791/68887","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic cells follow a conserved cell cycle that regulates diverse processes, including DNA maintenance and organelle homeostasis. Studying cellular processes in a cell cycle-dependent manner is often necessary to properly interpret experimental results. There are chemical and genetic methods available to produce cell cycle synchronization in cultured cells across a wide swath of organisms, including vertebrate models, enabling the study of cell cycle-dependent processes. However, among model organisms, budding yeast remains a powerhouse for cell cycle analysis due to its particularly robust synchronization methods, short generation time, and genetic tractability. Yeast shares core cell cycle machinery with other eukaryotes, which has enabled landmark discoveries in cell cycle regulation. This protocol details methods for cell cycle analysis in yeast, focusing on G1 arrest-release and mitotic arrest-release experiments, including strain construction, culture preparation, and microscopy. PCR tagging methods for producing suitable strains for cell cycle arrests and fluorescence microscopy are presented. A G1 arrest is achieved using the peptide pheromone α-factor, and brief washes result in synchronous release and cell cycle progression. Samples are taken at different time points following release into the cell cycle and fixed for microscopy. A second method arrests yeast cells in mitosis by depleting the cell cycle regulator Cdc20 to achieve a metaphase-arrested population, as well as optional release into anaphase. Samples are fixed and prepared for imaging pre- and post-release, and are imaged and analyzed. Image analysis focuses on cataloging dynamic localization and population abundance changes of proteins in the cell cycle. These synchronization methods are suitable for diverse cell cycle manipulations, and while their use in imaging fixed cells is highlighted here, they can be adapted for many other analyses, including live cell imaging as well as biochemical and molecular assays.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 223","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulation and Analysis of Cell Cycle-Dependent Processes in Budding Yeast.\",\"authors\":\"Michael G Stewart, Talia C Scheel, Ahmed A Abouelghar, Sara E Hoppe, Matthew P Miller\",\"doi\":\"10.3791/68887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic cells follow a conserved cell cycle that regulates diverse processes, including DNA maintenance and organelle homeostasis. Studying cellular processes in a cell cycle-dependent manner is often necessary to properly interpret experimental results. There are chemical and genetic methods available to produce cell cycle synchronization in cultured cells across a wide swath of organisms, including vertebrate models, enabling the study of cell cycle-dependent processes. However, among model organisms, budding yeast remains a powerhouse for cell cycle analysis due to its particularly robust synchronization methods, short generation time, and genetic tractability. Yeast shares core cell cycle machinery with other eukaryotes, which has enabled landmark discoveries in cell cycle regulation. This protocol details methods for cell cycle analysis in yeast, focusing on G1 arrest-release and mitotic arrest-release experiments, including strain construction, culture preparation, and microscopy. PCR tagging methods for producing suitable strains for cell cycle arrests and fluorescence microscopy are presented. A G1 arrest is achieved using the peptide pheromone α-factor, and brief washes result in synchronous release and cell cycle progression. Samples are taken at different time points following release into the cell cycle and fixed for microscopy. A second method arrests yeast cells in mitosis by depleting the cell cycle regulator Cdc20 to achieve a metaphase-arrested population, as well as optional release into anaphase. Samples are fixed and prepared for imaging pre- and post-release, and are imaged and analyzed. Image analysis focuses on cataloging dynamic localization and population abundance changes of proteins in the cell cycle. These synchronization methods are suitable for diverse cell cycle manipulations, and while their use in imaging fixed cells is highlighted here, they can be adapted for many other analyses, including live cell imaging as well as biochemical and molecular assays.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 223\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/68887\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68887","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

真核细胞遵循一个保守的细胞周期,调节多种过程,包括DNA维持和细胞器稳态。以细胞周期依赖的方式研究细胞过程对于正确解释实验结果通常是必要的。有化学和遗传方法可用于在包括脊椎动物模型在内的广泛生物体的培养细胞中产生细胞周期同步,从而使研究细胞周期依赖过程成为可能。然而,在模式生物中,出芽酵母由于其特别强大的同步方法,短的生成时间和遗传易感性,仍然是细胞周期分析的动力。酵母与其他真核生物共享核心细胞周期机制,这使得细胞周期调控的里程碑式发现成为可能。本协议详细介绍了酵母细胞周期分析的方法,重点是G1阻滞释放和有丝分裂阻滞释放实验,包括菌株构建,培养准备和显微镜。PCR标记的方法,以产生合适的菌株细胞周期逮捕和荧光显微镜提出。使用肽信息素α-因子实现G1阻滞,短暂洗涤导致同步释放和细胞周期进程。样品在释放后的不同时间点进入细胞周期并固定用于显微镜观察。第二种方法是通过消耗细胞周期调节因子Cdc20来抑制有丝分裂中的酵母细胞,以达到中期抑制的群体,以及可选的释放到后期。样品固定和准备成像前和释放后,并进行成像和分析。图像分析的重点是编目蛋白质在细胞周期中的动态定位和种群丰度变化。这些同步方法适用于不同的细胞周期操作,虽然这里强调了它们在固定细胞成像中的应用,但它们可以适用于许多其他分析,包括活细胞成像以及生化和分子分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manipulation and Analysis of Cell Cycle-Dependent Processes in Budding Yeast.

Eukaryotic cells follow a conserved cell cycle that regulates diverse processes, including DNA maintenance and organelle homeostasis. Studying cellular processes in a cell cycle-dependent manner is often necessary to properly interpret experimental results. There are chemical and genetic methods available to produce cell cycle synchronization in cultured cells across a wide swath of organisms, including vertebrate models, enabling the study of cell cycle-dependent processes. However, among model organisms, budding yeast remains a powerhouse for cell cycle analysis due to its particularly robust synchronization methods, short generation time, and genetic tractability. Yeast shares core cell cycle machinery with other eukaryotes, which has enabled landmark discoveries in cell cycle regulation. This protocol details methods for cell cycle analysis in yeast, focusing on G1 arrest-release and mitotic arrest-release experiments, including strain construction, culture preparation, and microscopy. PCR tagging methods for producing suitable strains for cell cycle arrests and fluorescence microscopy are presented. A G1 arrest is achieved using the peptide pheromone α-factor, and brief washes result in synchronous release and cell cycle progression. Samples are taken at different time points following release into the cell cycle and fixed for microscopy. A second method arrests yeast cells in mitosis by depleting the cell cycle regulator Cdc20 to achieve a metaphase-arrested population, as well as optional release into anaphase. Samples are fixed and prepared for imaging pre- and post-release, and are imaged and analyzed. Image analysis focuses on cataloging dynamic localization and population abundance changes of proteins in the cell cycle. These synchronization methods are suitable for diverse cell cycle manipulations, and while their use in imaging fixed cells is highlighted here, they can be adapted for many other analyses, including live cell imaging as well as biochemical and molecular assays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信