采用多源高精度数据校正人口网格数据。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shuang Wang, Chun Dong, Rong Zhao, Yu Zhang
{"title":"采用多源高精度数据校正人口网格数据。","authors":"Shuang Wang, Chun Dong, Rong Zhao, Yu Zhang","doi":"10.1038/s41598-025-19249-3","DOIUrl":null,"url":null,"abstract":"<p><p>Population grid data provide a fundamental scientific basis for ecological planning and management, environmental monitoring and assessment, ecological early warning, and emergency response. Traditional population allocation methods based on administrative units frequently introduce cross-scale errors, and current population grid datasets require enhancement regarding regional fine-grained characteristics and population distribution. This study presents a methodology to correct public population grid data utilizing Multisource high precision data at the grid scale. WorldPop serves as the baseline data for correction. The original data undergoes enhancement through a new model, incorporating Multisource high precision auxiliary data. The results indicate that compared to the original data, the RMSE of the corrected population grid data decreased by more than seven times, with an R<sup>2</sup> of 0.997, demonstrating substantial improvement in data quality.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"35614"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12518877/pdf/","citationCount":"0","resultStr":"{\"title\":\"Corrected population grid data using multisource high precision data.\",\"authors\":\"Shuang Wang, Chun Dong, Rong Zhao, Yu Zhang\",\"doi\":\"10.1038/s41598-025-19249-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Population grid data provide a fundamental scientific basis for ecological planning and management, environmental monitoring and assessment, ecological early warning, and emergency response. Traditional population allocation methods based on administrative units frequently introduce cross-scale errors, and current population grid datasets require enhancement regarding regional fine-grained characteristics and population distribution. This study presents a methodology to correct public population grid data utilizing Multisource high precision data at the grid scale. WorldPop serves as the baseline data for correction. The original data undergoes enhancement through a new model, incorporating Multisource high precision auxiliary data. The results indicate that compared to the original data, the RMSE of the corrected population grid data decreased by more than seven times, with an R<sup>2</sup> of 0.997, demonstrating substantial improvement in data quality.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"35614\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12518877/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-19249-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-19249-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人口网格数据为生态规划与管理、环境监测与评价、生态预警和应急响应提供了基础科学依据。传统的基于行政单位的人口分配方法往往存在跨尺度误差,当前的人口网格数据集在区域细粒度特征和人口分布方面有待改进。本文提出了一种在网格尺度上利用多源高精度数据对公共人口网格数据进行校正的方法。WorldPop作为校正的基准数据。采用多源高精度辅助数据,对原始数据进行增强。结果表明,与原始数据相比,修正后的人口网格数据RMSE降低了7倍以上,R2为0.997,数据质量有了较大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Corrected population grid data using multisource high precision data.

Corrected population grid data using multisource high precision data.

Corrected population grid data using multisource high precision data.

Corrected population grid data using multisource high precision data.

Population grid data provide a fundamental scientific basis for ecological planning and management, environmental monitoring and assessment, ecological early warning, and emergency response. Traditional population allocation methods based on administrative units frequently introduce cross-scale errors, and current population grid datasets require enhancement regarding regional fine-grained characteristics and population distribution. This study presents a methodology to correct public population grid data utilizing Multisource high precision data at the grid scale. WorldPop serves as the baseline data for correction. The original data undergoes enhancement through a new model, incorporating Multisource high precision auxiliary data. The results indicate that compared to the original data, the RMSE of the corrected population grid data decreased by more than seven times, with an R2 of 0.997, demonstrating substantial improvement in data quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信