Pierre Boyeau, Justin Hong, Adam Gayoso, Martin Kim, José L McFaline-Figueroa, Michael I Jordan, Elham Azizi, Can Ergen, Nir Yosef
{"title":"单细胞基因组学中样本水平异质性的深度生成建模。","authors":"Pierre Boyeau, Justin Hong, Adam Gayoso, Martin Kim, José L McFaline-Figueroa, Michael I Jordan, Elham Azizi, Can Ergen, Nir Yosef","doi":"10.1038/s41592-025-02808-x","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell genomic studies were recently conducted on hundred of samples exhibiting complex designs. These data have tremendous potential for discovering how sample- or tissue-level phenotypes relate to cellular and molecular composition. However, current analyses are often based on simplified representations of these data by averaging information across cells. We present multi-resolution variational inference (MrVI), a deep generative model designed to realize the potential of cohort studies at the single-cell level. MrVI tackles two fundamental, intertwined problems: stratifying samples into groups and evaluating the cellular and molecular differences between groups, without requiring predefined cell states. Leveraging its single-cell perspective, MrVI detects clinically relevant stratifications of cohorts of people with COVID-19 or inflammatory bowel disease that are manifested in only certain cellular subsets, enabling new discoveries that would otherwise be overlooked. MrVI can de novo identify groups of small molecules with similar biochemical properties and evaluate their effects on cellular composition and gene expression in large-scale perturbation studies. MrVI is an open-source tool at scvi-tools.org .</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep generative modeling of sample-level heterogeneity in single-cell genomics.\",\"authors\":\"Pierre Boyeau, Justin Hong, Adam Gayoso, Martin Kim, José L McFaline-Figueroa, Michael I Jordan, Elham Azizi, Can Ergen, Nir Yosef\",\"doi\":\"10.1038/s41592-025-02808-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell genomic studies were recently conducted on hundred of samples exhibiting complex designs. These data have tremendous potential for discovering how sample- or tissue-level phenotypes relate to cellular and molecular composition. However, current analyses are often based on simplified representations of these data by averaging information across cells. We present multi-resolution variational inference (MrVI), a deep generative model designed to realize the potential of cohort studies at the single-cell level. MrVI tackles two fundamental, intertwined problems: stratifying samples into groups and evaluating the cellular and molecular differences between groups, without requiring predefined cell states. Leveraging its single-cell perspective, MrVI detects clinically relevant stratifications of cohorts of people with COVID-19 or inflammatory bowel disease that are manifested in only certain cellular subsets, enabling new discoveries that would otherwise be overlooked. MrVI can de novo identify groups of small molecules with similar biochemical properties and evaluate their effects on cellular composition and gene expression in large-scale perturbation studies. MrVI is an open-source tool at scvi-tools.org .</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02808-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02808-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Deep generative modeling of sample-level heterogeneity in single-cell genomics.
Single-cell genomic studies were recently conducted on hundred of samples exhibiting complex designs. These data have tremendous potential for discovering how sample- or tissue-level phenotypes relate to cellular and molecular composition. However, current analyses are often based on simplified representations of these data by averaging information across cells. We present multi-resolution variational inference (MrVI), a deep generative model designed to realize the potential of cohort studies at the single-cell level. MrVI tackles two fundamental, intertwined problems: stratifying samples into groups and evaluating the cellular and molecular differences between groups, without requiring predefined cell states. Leveraging its single-cell perspective, MrVI detects clinically relevant stratifications of cohorts of people with COVID-19 or inflammatory bowel disease that are manifested in only certain cellular subsets, enabling new discoveries that would otherwise be overlooked. MrVI can de novo identify groups of small molecules with similar biochemical properties and evaluate their effects on cellular composition and gene expression in large-scale perturbation studies. MrVI is an open-source tool at scvi-tools.org .
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.