电负性引导分子钝化和桥接提高碳基空穴-无传输层CsPbI2Br太阳能电池的性能。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hai Liu, Xueyan Ma, Hongyan Cheng, Zhengjun Meng, Wenxuan Li, Guodong Wan, Xiaoyang Liu, Zhe Gao, Hongbo Tong, Yujun Fu, Yai Li, Deyan He, Junshuai Li
{"title":"电负性引导分子钝化和桥接提高碳基空穴-无传输层CsPbI2Br太阳能电池的性能。","authors":"Hai Liu, Xueyan Ma, Hongyan Cheng, Zhengjun Meng, Wenxuan Li, Guodong Wan, Xiaoyang Liu, Zhe Gao, Hongbo Tong, Yujun Fu, Yai Li, Deyan He, Junshuai Li","doi":"10.1002/smtd.202501466","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon-based hole-transport-layer (HTL)-free CsPbI<sub>2</sub>Br solar cells well balance power conversion efficiency (PCE), stability, and cost, but suffer from defects including undercoordinated Pb<sup>2+</sup> and mobile I<sup>-</sup> in CsPbI<sub>2</sub>Br, and undercoordinated Sn<sup>4+</sup> and oxygen vacancies (V<sub>O</sub>) in the SnO<sub>2</sub> electron transport layers. To address these issues, biphenyl oxyacid additives including [1, 1'-biphenyl]-4, 4'-diphosphonic acid (BDPA), [1, 1'-biphenyl]-4, 4'-dicarboxylic acid, and [1, 1'-biphenyl]-4, 4'-disulfonic acid are investigated. It is found that the para-positioned oxyacid double bonds can coordinate with uncoordinated Pb<sup>2+</sup> to form stable Pb─O bonds, while hydroxyls can anchor mobile I<sup>-</sup> via H-bonding. The opposing oxyacid double bonds can bind with uncoordinated Sn<sup>4+</sup> to form stable Sn─O bonds, thus inhibiting V<sub>O</sub> formation. Concurrently, the symmetric oxyacid groups bridge the SnO<sub>2</sub> and CsPbI<sub>2</sub>Br layers via coordination, thus enabling the biphenyl structure to function as an electron transport channel. Moreover, the additives increase the CsPbI<sub>2</sub>Br grain dimensions alongside enhanced surface density and reduced roughness. BDPA exhibits superior passivation efficacy due to the reduced electronegativity of its central phosphorus atom, strengthening oxygen coordination capability. Consequently, the BDPA-optimized device delivers a leading PCE of 15.55%, ≈24% increment over 11.80% for the control device, as well as the improved operational stability and reduced current-voltage hysteresis.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01466"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronegativity-Guided Molecular Passivation and Bridging for the Enhanced Performance of Carbon-Based Hole-Transport-Layer-Free CsPbI<sub>2</sub>Br Solar Cells.\",\"authors\":\"Hai Liu, Xueyan Ma, Hongyan Cheng, Zhengjun Meng, Wenxuan Li, Guodong Wan, Xiaoyang Liu, Zhe Gao, Hongbo Tong, Yujun Fu, Yai Li, Deyan He, Junshuai Li\",\"doi\":\"10.1002/smtd.202501466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon-based hole-transport-layer (HTL)-free CsPbI<sub>2</sub>Br solar cells well balance power conversion efficiency (PCE), stability, and cost, but suffer from defects including undercoordinated Pb<sup>2+</sup> and mobile I<sup>-</sup> in CsPbI<sub>2</sub>Br, and undercoordinated Sn<sup>4+</sup> and oxygen vacancies (V<sub>O</sub>) in the SnO<sub>2</sub> electron transport layers. To address these issues, biphenyl oxyacid additives including [1, 1'-biphenyl]-4, 4'-diphosphonic acid (BDPA), [1, 1'-biphenyl]-4, 4'-dicarboxylic acid, and [1, 1'-biphenyl]-4, 4'-disulfonic acid are investigated. It is found that the para-positioned oxyacid double bonds can coordinate with uncoordinated Pb<sup>2+</sup> to form stable Pb─O bonds, while hydroxyls can anchor mobile I<sup>-</sup> via H-bonding. The opposing oxyacid double bonds can bind with uncoordinated Sn<sup>4+</sup> to form stable Sn─O bonds, thus inhibiting V<sub>O</sub> formation. Concurrently, the symmetric oxyacid groups bridge the SnO<sub>2</sub> and CsPbI<sub>2</sub>Br layers via coordination, thus enabling the biphenyl structure to function as an electron transport channel. Moreover, the additives increase the CsPbI<sub>2</sub>Br grain dimensions alongside enhanced surface density and reduced roughness. BDPA exhibits superior passivation efficacy due to the reduced electronegativity of its central phosphorus atom, strengthening oxygen coordination capability. Consequently, the BDPA-optimized device delivers a leading PCE of 15.55%, ≈24% increment over 11.80% for the control device, as well as the improved operational stability and reduced current-voltage hysteresis.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01466\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501466\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501466","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

无碳基空穴传输层(HTL) CsPbI2Br太阳能电池能很好地平衡功率转换效率(PCE)、稳定性和成本,但存在CsPbI2Br中Pb2+和可移动I-欠配位以及SnO2电子传输层中Sn4+和氧空位(VO)欠配位的缺陷。为了解决这些问题,对[1,1 '-联苯]- 4,4 '-二膦酸(BDPA)、[1,1 '-联苯]- 4,4 '-二羧酸和[1,1 '-联苯]- 4,4 '-二磺酸等联苯氧酸添加剂进行了研究。研究发现,对位的氧酸双键可以与不配位的Pb2+配位形成稳定的Pb─O键,而羟基则可以通过氢键锚定可移动的I-。相反的氧酸双键可以与不配位的Sn4+结合形成稳定的Sn─O键,从而抑制VO的形成。同时,对称的氧基通过配位桥接SnO2和CsPbI2Br层,从而使联苯结构成为电子传递通道。此外,添加剂增加了CsPbI2Br晶粒尺寸,提高了表面密度,降低了粗糙度。BDPA由于中心磷原子的电负性降低,氧配位能力增强,表现出优异的钝化效果。因此,bdpa优化器件的PCE为15.55%,比控制器件的11.80%提高了约24%,并且提高了工作稳定性和降低了电流-电压滞后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronegativity-Guided Molecular Passivation and Bridging for the Enhanced Performance of Carbon-Based Hole-Transport-Layer-Free CsPbI2Br Solar Cells.

Carbon-based hole-transport-layer (HTL)-free CsPbI2Br solar cells well balance power conversion efficiency (PCE), stability, and cost, but suffer from defects including undercoordinated Pb2+ and mobile I- in CsPbI2Br, and undercoordinated Sn4+ and oxygen vacancies (VO) in the SnO2 electron transport layers. To address these issues, biphenyl oxyacid additives including [1, 1'-biphenyl]-4, 4'-diphosphonic acid (BDPA), [1, 1'-biphenyl]-4, 4'-dicarboxylic acid, and [1, 1'-biphenyl]-4, 4'-disulfonic acid are investigated. It is found that the para-positioned oxyacid double bonds can coordinate with uncoordinated Pb2+ to form stable Pb─O bonds, while hydroxyls can anchor mobile I- via H-bonding. The opposing oxyacid double bonds can bind with uncoordinated Sn4+ to form stable Sn─O bonds, thus inhibiting VO formation. Concurrently, the symmetric oxyacid groups bridge the SnO2 and CsPbI2Br layers via coordination, thus enabling the biphenyl structure to function as an electron transport channel. Moreover, the additives increase the CsPbI2Br grain dimensions alongside enhanced surface density and reduced roughness. BDPA exhibits superior passivation efficacy due to the reduced electronegativity of its central phosphorus atom, strengthening oxygen coordination capability. Consequently, the BDPA-optimized device delivers a leading PCE of 15.55%, ≈24% increment over 11.80% for the control device, as well as the improved operational stability and reduced current-voltage hysteresis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信