Junyi Tan, Zhejuan Tian, Feifan Chen, Kang Gao, Jinghao Jin, Anthony P Keinath, Ronald D Dymerski, Zhiming Wu, Yiqun Weng
{"title":"Staygreen突变的光系统扰动赋予等位基因依赖防御不同生活方式和非生物胁迫耐受性病原体的感染。","authors":"Junyi Tan, Zhejuan Tian, Feifan Chen, Kang Gao, Jinghao Jin, Anthony P Keinath, Ronald D Dymerski, Zhiming Wu, Yiqun Weng","doi":"10.1111/pce.70229","DOIUrl":null,"url":null,"abstract":"<p><p>The staygreen (SGR) gene encodes the magnesium dechelatase that plays an important regulatory role during chlorophyll degradation. Our previous work revealed a nonsynonymous SNP (A323G) inside cucumber CsSGR that is responsible for multiple disease resistance (MDR), but the underlying mechanism is unknown. Here we report the development, phenotypic, genetic, or transcriptomic characterisation of near-isogenic lines for the A323G locus and knock-out mutants of CsSGR (SGRΔ37 with 37-bp deletion) in response to biotic/abiotic stresses. Both SNP and SGRΔ37 mutants show enhanced MDR against infection of five pathogens with different lifestyles, as well as low-temperature tolerance than the wildtype, and SGRΔ37 is a stronger allele with higher resistance/tolerance than the A323G allele. Physical interactions of CsSGR with itself and other chlorophyll catabolic enzymes (CCEs), light-harvesting chlorophyll a/b-binding1 proteins (LHCB1s), and the chlorophyll homoeostasis regulator CsBCM are significantly reduced or abolished in A323G and SGRΔ37 mutants, respectively. Comparative transcriptome analyses revealed a complex regulatory network in which both passive and active defences contribute to Cssgr-conferred MDR. The loss-of-susceptibility CsSGR mutations downregulate expression of chlorophyll catabolic genes, slow down chlorophyll degradation, and delay pathogenesis-induced senescence, thus providing passive defence. The active defence involves SA and/or JA biosynthesis/signalling pathways, which are likely triggered by ROS-mediated retrograde signalling due to perturbation of the photosynthetic electron transport chain. We propose that CsSGR is a target of choice for gene editing to develop mutant alleles for enhanced MDR. Further, mutations of genes involving chlorophyll metabolism, photosystems, or chloroplast development could be a potential source of MDR for plant breeding.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photosystem Perturbation by Staygreen Mutations Confers Allele-Dependent Defences Against Infections of Pathogens With Different Lifestyles and Abiotic Stress Tolerance.\",\"authors\":\"Junyi Tan, Zhejuan Tian, Feifan Chen, Kang Gao, Jinghao Jin, Anthony P Keinath, Ronald D Dymerski, Zhiming Wu, Yiqun Weng\",\"doi\":\"10.1111/pce.70229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The staygreen (SGR) gene encodes the magnesium dechelatase that plays an important regulatory role during chlorophyll degradation. Our previous work revealed a nonsynonymous SNP (A323G) inside cucumber CsSGR that is responsible for multiple disease resistance (MDR), but the underlying mechanism is unknown. Here we report the development, phenotypic, genetic, or transcriptomic characterisation of near-isogenic lines for the A323G locus and knock-out mutants of CsSGR (SGRΔ37 with 37-bp deletion) in response to biotic/abiotic stresses. Both SNP and SGRΔ37 mutants show enhanced MDR against infection of five pathogens with different lifestyles, as well as low-temperature tolerance than the wildtype, and SGRΔ37 is a stronger allele with higher resistance/tolerance than the A323G allele. Physical interactions of CsSGR with itself and other chlorophyll catabolic enzymes (CCEs), light-harvesting chlorophyll a/b-binding1 proteins (LHCB1s), and the chlorophyll homoeostasis regulator CsBCM are significantly reduced or abolished in A323G and SGRΔ37 mutants, respectively. Comparative transcriptome analyses revealed a complex regulatory network in which both passive and active defences contribute to Cssgr-conferred MDR. The loss-of-susceptibility CsSGR mutations downregulate expression of chlorophyll catabolic genes, slow down chlorophyll degradation, and delay pathogenesis-induced senescence, thus providing passive defence. The active defence involves SA and/or JA biosynthesis/signalling pathways, which are likely triggered by ROS-mediated retrograde signalling due to perturbation of the photosynthetic electron transport chain. We propose that CsSGR is a target of choice for gene editing to develop mutant alleles for enhanced MDR. Further, mutations of genes involving chlorophyll metabolism, photosystems, or chloroplast development could be a potential source of MDR for plant breeding.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70229\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70229","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Photosystem Perturbation by Staygreen Mutations Confers Allele-Dependent Defences Against Infections of Pathogens With Different Lifestyles and Abiotic Stress Tolerance.
The staygreen (SGR) gene encodes the magnesium dechelatase that plays an important regulatory role during chlorophyll degradation. Our previous work revealed a nonsynonymous SNP (A323G) inside cucumber CsSGR that is responsible for multiple disease resistance (MDR), but the underlying mechanism is unknown. Here we report the development, phenotypic, genetic, or transcriptomic characterisation of near-isogenic lines for the A323G locus and knock-out mutants of CsSGR (SGRΔ37 with 37-bp deletion) in response to biotic/abiotic stresses. Both SNP and SGRΔ37 mutants show enhanced MDR against infection of five pathogens with different lifestyles, as well as low-temperature tolerance than the wildtype, and SGRΔ37 is a stronger allele with higher resistance/tolerance than the A323G allele. Physical interactions of CsSGR with itself and other chlorophyll catabolic enzymes (CCEs), light-harvesting chlorophyll a/b-binding1 proteins (LHCB1s), and the chlorophyll homoeostasis regulator CsBCM are significantly reduced or abolished in A323G and SGRΔ37 mutants, respectively. Comparative transcriptome analyses revealed a complex regulatory network in which both passive and active defences contribute to Cssgr-conferred MDR. The loss-of-susceptibility CsSGR mutations downregulate expression of chlorophyll catabolic genes, slow down chlorophyll degradation, and delay pathogenesis-induced senescence, thus providing passive defence. The active defence involves SA and/or JA biosynthesis/signalling pathways, which are likely triggered by ROS-mediated retrograde signalling due to perturbation of the photosynthetic electron transport chain. We propose that CsSGR is a target of choice for gene editing to develop mutant alleles for enhanced MDR. Further, mutations of genes involving chlorophyll metabolism, photosystems, or chloroplast development could be a potential source of MDR for plant breeding.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.