Ruilin Zhu, Xin Tao, Zemin He, Lianghao Yu, Tiantian Wei, Haoliang Xie, Jingjing Xie, Pan Li, Kongqing Yu, Jun Li, Huile Jin, Shun Wang, Jichang Wang
{"title":"抑制ZnS阳极合金反应优化钠离子电池性能。","authors":"Ruilin Zhu, Xin Tao, Zemin He, Lianghao Yu, Tiantian Wei, Haoliang Xie, Jingjing Xie, Pan Li, Kongqing Yu, Jun Li, Huile Jin, Shun Wang, Jichang Wang","doi":"10.1002/cssc.202501774","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc sulfide (ZnS) is a promising anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and cost-effectiveness. However, the alloying reaction of ZnS causes severe volume expansion, leading to material pulverization and capacity decay. To address this, a sandwich-structured ZnS/porous MXene (ZnS/PMX) composite is designed, where ZnS nanoparticles are anchored on PMX porous layers via ZnOTi interfacial bonding. The nanoporous structure of PMX creates vertical ion transport pathways, enabling faster sodium-ion diffusion and overcoming the limitations of conventional 2D MXene. Additionally, the confinement effect of PMX suppresses the alloying reaction of ZnS, enhancing its structural stability. As an SIB anode, ZnS/PMX maintains capacities of 414.8 mA h g<sup>-</sup> <sup>1</sup> after 2100 cycles at 5.0 A g<sup>-</sup> <sup>1</sup>, 322.9 mA h g<sup>-</sup> <sup>1</sup> after 3300 cycles at 10.0 A g<sup>-</sup> <sup>1</sup>, and 276.9 mA h g<sup>-</sup> <sup>1</sup> after 4100 cycles at 20.0 A g<sup>-</sup> <sup>1</sup>. This performance benefits from the confinement effects of PMX, which effectively suppresses the alloying reaction and enhances ZnS stability. The results shed new light on the design of metal sulfide/MXene hybrid materials for alkali metal batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501774"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Performance of Sodium-Ion Battery through Suppressing ZnS Anode Alloy Reaction.\",\"authors\":\"Ruilin Zhu, Xin Tao, Zemin He, Lianghao Yu, Tiantian Wei, Haoliang Xie, Jingjing Xie, Pan Li, Kongqing Yu, Jun Li, Huile Jin, Shun Wang, Jichang Wang\",\"doi\":\"10.1002/cssc.202501774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc sulfide (ZnS) is a promising anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and cost-effectiveness. However, the alloying reaction of ZnS causes severe volume expansion, leading to material pulverization and capacity decay. To address this, a sandwich-structured ZnS/porous MXene (ZnS/PMX) composite is designed, where ZnS nanoparticles are anchored on PMX porous layers via ZnOTi interfacial bonding. The nanoporous structure of PMX creates vertical ion transport pathways, enabling faster sodium-ion diffusion and overcoming the limitations of conventional 2D MXene. Additionally, the confinement effect of PMX suppresses the alloying reaction of ZnS, enhancing its structural stability. As an SIB anode, ZnS/PMX maintains capacities of 414.8 mA h g<sup>-</sup> <sup>1</sup> after 2100 cycles at 5.0 A g<sup>-</sup> <sup>1</sup>, 322.9 mA h g<sup>-</sup> <sup>1</sup> after 3300 cycles at 10.0 A g<sup>-</sup> <sup>1</sup>, and 276.9 mA h g<sup>-</sup> <sup>1</sup> after 4100 cycles at 20.0 A g<sup>-</sup> <sup>1</sup>. This performance benefits from the confinement effects of PMX, which effectively suppresses the alloying reaction and enhances ZnS stability. The results shed new light on the design of metal sulfide/MXene hybrid materials for alkali metal batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501774\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501774\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501774","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
硫化锌(ZnS)具有较高的理论容量和成本效益,是一种很有前途的钠离子电池负极材料。然而,ZnS的合金化反应会引起严重的体积膨胀,导致材料粉化和容量衰减。为了解决这个问题,设计了一种三明治结构的ZnS/多孔MXene (ZnS/PMX)复合材料,其中ZnS纳米颗粒通过Zn - _ - O - _ - Ti界面键固定在PMX多孔层上。PMX的纳米孔结构创造了垂直离子传输途径,使钠离子扩散更快,克服了传统2D MXene的局限性。PMX的约束作用抑制了ZnS的合金化反应,提高了ZnS的结构稳定性。作为SIB阳极,ZnS/PMX在5.0 A g- 1下循环2100次后容量为414.8 mA h g- 1,在10.0 A g- 1下循环3300次后容量为322.9 mA h g- 1,在20.0 A g- 1下循环4100次后容量为276.9 mA h g- 1。这种性能得益于PMX的约束作用,它有效地抑制了合金反应,提高了ZnS的稳定性。研究结果为碱金属电池用金属硫化物/MXene杂化材料的设计提供了新的思路。
Optimizing the Performance of Sodium-Ion Battery through Suppressing ZnS Anode Alloy Reaction.
Zinc sulfide (ZnS) is a promising anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and cost-effectiveness. However, the alloying reaction of ZnS causes severe volume expansion, leading to material pulverization and capacity decay. To address this, a sandwich-structured ZnS/porous MXene (ZnS/PMX) composite is designed, where ZnS nanoparticles are anchored on PMX porous layers via ZnOTi interfacial bonding. The nanoporous structure of PMX creates vertical ion transport pathways, enabling faster sodium-ion diffusion and overcoming the limitations of conventional 2D MXene. Additionally, the confinement effect of PMX suppresses the alloying reaction of ZnS, enhancing its structural stability. As an SIB anode, ZnS/PMX maintains capacities of 414.8 mA h g-1 after 2100 cycles at 5.0 A g-1, 322.9 mA h g-1 after 3300 cycles at 10.0 A g-1, and 276.9 mA h g-1 after 4100 cycles at 20.0 A g-1. This performance benefits from the confinement effects of PMX, which effectively suppresses the alloying reaction and enhances ZnS stability. The results shed new light on the design of metal sulfide/MXene hybrid materials for alkali metal batteries.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology