Xiaoling Liu, Nadine Leisgang, Pavel E. Dolgirev, Alexander A. Zibrov, Jiho Sung, Jue Wang, Takashi Taniguchi, Kenji Watanabe, Valentin Walther, Hongkun Park, Eugene Demler, Philip Kim, Mikhail D. Lukin
{"title":"双层半导体层间电子相干性的光学特征","authors":"Xiaoling Liu, Nadine Leisgang, Pavel E. Dolgirev, Alexander A. Zibrov, Jiho Sung, Jue Wang, Takashi Taniguchi, Kenji Watanabe, Valentin Walther, Hongkun Park, Eugene Demler, Philip Kim, Mikhail D. Lukin","doi":"10.1038/s41567-025-02971-0","DOIUrl":null,"url":null,"abstract":"Emergent strongly correlated electronic phenomena in atomically thin transition-metal dichalcogenides are an exciting frontier in condensed matter physics, with examples ranging from bilayer superconductivity and electronic Wigner crystals to the ongoing search for exciton condensation. Here we take a step towards the latter by reporting experimental signatures of unconventional hybridization of the excitons with opposing dipoles consistent with coherence between interlayer electrons in a transition-metal dichalcogenide bilayer. We investigate naturally grown MoS2 homobilayers integrated in a dual-gate device structure allowing independent control of the electron density and out-of-plane electric field. By electron doping the bilayer when electron tunnelling between the layers is negligible, we observe that the two interlayer excitons hybridize, displaying unusual behaviour distinct from both conventional level crossing and anti-crossing. We show that these observations can be explained by quasi-static random coupling between the excitons, which increases with electron density and decreases with temperature. We argue that this phenomenon is indicative of a spatially fluctuating order parameter in the form of interlayer electron coherence, a theoretically predicted many-body state that has yet to be unambiguously established experimentally outside of the quantum Hall regime. Condensates of excitons have been observed in the quantum Hall regime, but evidence for their existence at low magnetic fields remains controversial. Now evidence of coherence between optically pumped interlayer excitons in MoS2 marks a step towards confirming exciton condensation at low magnetic fields.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 10","pages":"1563-1569"},"PeriodicalIF":18.4000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41567-025-02971-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Optical signatures of interlayer electron coherence in a bilayer semiconductor\",\"authors\":\"Xiaoling Liu, Nadine Leisgang, Pavel E. Dolgirev, Alexander A. Zibrov, Jiho Sung, Jue Wang, Takashi Taniguchi, Kenji Watanabe, Valentin Walther, Hongkun Park, Eugene Demler, Philip Kim, Mikhail D. Lukin\",\"doi\":\"10.1038/s41567-025-02971-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emergent strongly correlated electronic phenomena in atomically thin transition-metal dichalcogenides are an exciting frontier in condensed matter physics, with examples ranging from bilayer superconductivity and electronic Wigner crystals to the ongoing search for exciton condensation. Here we take a step towards the latter by reporting experimental signatures of unconventional hybridization of the excitons with opposing dipoles consistent with coherence between interlayer electrons in a transition-metal dichalcogenide bilayer. We investigate naturally grown MoS2 homobilayers integrated in a dual-gate device structure allowing independent control of the electron density and out-of-plane electric field. By electron doping the bilayer when electron tunnelling between the layers is negligible, we observe that the two interlayer excitons hybridize, displaying unusual behaviour distinct from both conventional level crossing and anti-crossing. We show that these observations can be explained by quasi-static random coupling between the excitons, which increases with electron density and decreases with temperature. We argue that this phenomenon is indicative of a spatially fluctuating order parameter in the form of interlayer electron coherence, a theoretically predicted many-body state that has yet to be unambiguously established experimentally outside of the quantum Hall regime. Condensates of excitons have been observed in the quantum Hall regime, but evidence for their existence at low magnetic fields remains controversial. Now evidence of coherence between optically pumped interlayer excitons in MoS2 marks a step towards confirming exciton condensation at low magnetic fields.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"21 10\",\"pages\":\"1563-1569\"},\"PeriodicalIF\":18.4000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s41567-025-02971-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-025-02971-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-025-02971-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical signatures of interlayer electron coherence in a bilayer semiconductor
Emergent strongly correlated electronic phenomena in atomically thin transition-metal dichalcogenides are an exciting frontier in condensed matter physics, with examples ranging from bilayer superconductivity and electronic Wigner crystals to the ongoing search for exciton condensation. Here we take a step towards the latter by reporting experimental signatures of unconventional hybridization of the excitons with opposing dipoles consistent with coherence between interlayer electrons in a transition-metal dichalcogenide bilayer. We investigate naturally grown MoS2 homobilayers integrated in a dual-gate device structure allowing independent control of the electron density and out-of-plane electric field. By electron doping the bilayer when electron tunnelling between the layers is negligible, we observe that the two interlayer excitons hybridize, displaying unusual behaviour distinct from both conventional level crossing and anti-crossing. We show that these observations can be explained by quasi-static random coupling between the excitons, which increases with electron density and decreases with temperature. We argue that this phenomenon is indicative of a spatially fluctuating order parameter in the form of interlayer electron coherence, a theoretically predicted many-body state that has yet to be unambiguously established experimentally outside of the quantum Hall regime. Condensates of excitons have been observed in the quantum Hall regime, but evidence for their existence at low magnetic fields remains controversial. Now evidence of coherence between optically pumped interlayer excitons in MoS2 marks a step towards confirming exciton condensation at low magnetic fields.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.