FT-NIR光谱数据多元分析快速测定非木浆中己烯醛酸的方法

IF 2.8 3区 化学 Q2 POLYMER SCIENCE
Mohammad Nashir Uddin, Taslima Ferdous, Md. Nur Alam Likhon, Riyadh Hossen Bhuiyan, Yonghao Ni, Md. Mostafizur Rahman, M. Sarwar Jahan
{"title":"FT-NIR光谱数据多元分析快速测定非木浆中己烯醛酸的方法","authors":"Mohammad Nashir Uddin,&nbsp;Taslima Ferdous,&nbsp;Md. Nur Alam Likhon,&nbsp;Riyadh Hossen Bhuiyan,&nbsp;Yonghao Ni,&nbsp;Md. Mostafizur Rahman,&nbsp;M. Sarwar Jahan","doi":"10.1002/app.57698","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the chlorine dioxide bleaching stage of elemental chlorine-free (ECF) chemical pulp production, hexeneuronic acid (HexA) in the brown stock contributes to the kappa number and consumes chlorine dioxide. This study aims to develop a feasible, environmentally friendly, and rapid method for quantifying HexA content in non-wood pulp using FT-NIR spectroscopy combined with chemometric modeling. The HexA levels were measured in 44 non-wood pulp samples to validate the approach. The same samples were analyzed using FT-NIR spectroscopy, and the obtained spectral data were preprocessed using Savitzky–Golay (S–G) smoothing followed by first and second derivatives, a common approach in chemometric analysis. Principal component regression (PCR) and partial least squares regression (PLSR) were evaluated for HexA quantification using both raw and pretreated FT-NIR spectra. The PLSR model demonstrated superior predictive performance (<i>R</i>\n <sup>2</sup> = 94.24%) when applied to FT-NIR data preprocessed with Savitzky–Golay filtering, derivatives, and leverage correction. Finally, the validated model exhibited excellent accuracy in predicting HexA content in unknown non-wood pulp samples, achieving a high correlation coefficient (<i>r</i> = 0.993).</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 44","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for Rapid Determination of Hexeneuronic Acid in Non-Wood Pulp by Multivariate Analysis of FT-NIR Spectroscopic Data\",\"authors\":\"Mohammad Nashir Uddin,&nbsp;Taslima Ferdous,&nbsp;Md. Nur Alam Likhon,&nbsp;Riyadh Hossen Bhuiyan,&nbsp;Yonghao Ni,&nbsp;Md. Mostafizur Rahman,&nbsp;M. Sarwar Jahan\",\"doi\":\"10.1002/app.57698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the chlorine dioxide bleaching stage of elemental chlorine-free (ECF) chemical pulp production, hexeneuronic acid (HexA) in the brown stock contributes to the kappa number and consumes chlorine dioxide. This study aims to develop a feasible, environmentally friendly, and rapid method for quantifying HexA content in non-wood pulp using FT-NIR spectroscopy combined with chemometric modeling. The HexA levels were measured in 44 non-wood pulp samples to validate the approach. The same samples were analyzed using FT-NIR spectroscopy, and the obtained spectral data were preprocessed using Savitzky–Golay (S–G) smoothing followed by first and second derivatives, a common approach in chemometric analysis. Principal component regression (PCR) and partial least squares regression (PLSR) were evaluated for HexA quantification using both raw and pretreated FT-NIR spectra. The PLSR model demonstrated superior predictive performance (<i>R</i>\\n <sup>2</sup> = 94.24%) when applied to FT-NIR data preprocessed with Savitzky–Golay filtering, derivatives, and leverage correction. Finally, the validated model exhibited excellent accuracy in predicting HexA content in unknown non-wood pulp samples, achieving a high correlation coefficient (<i>r</i> = 0.993).</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 44\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.57698\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.57698","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在无元素氯(ECF)化学纸浆生产的二氧化氯漂白阶段,棕浆中的己烯醛酸(HexA)对kappa值有贡献,对二氧化氯有消耗。本研究旨在建立一种可行、环保、快速的方法,利用FT-NIR光谱结合化学计量模型来定量非木浆中HexA的含量。在44个非木浆样品中测量了HexA水平,以验证该方法。同样的样品使用FT-NIR光谱进行分析,得到的光谱数据使用Savitzky-Golay (S-G)平滑,然后进行一阶导数和二阶导数预处理,这是化学计量分析中常用的方法。主成分回归(PCR)和偏最小二乘回归(PLSR)对原始和预处理FT-NIR光谱的HexA定量进行了评估。当应用于经Savitzky-Golay滤波、导数和杠杆校正预处理的FT-NIR数据时,PLSR模型显示出优越的预测性能(r2 = 94.24%)。最后,验证的模型对未知非木浆样品中HexA含量的预测精度较高,相关系数(r = 0.993)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Method for Rapid Determination of Hexeneuronic Acid in Non-Wood Pulp by Multivariate Analysis of FT-NIR Spectroscopic Data

Method for Rapid Determination of Hexeneuronic Acid in Non-Wood Pulp by Multivariate Analysis of FT-NIR Spectroscopic Data

In the chlorine dioxide bleaching stage of elemental chlorine-free (ECF) chemical pulp production, hexeneuronic acid (HexA) in the brown stock contributes to the kappa number and consumes chlorine dioxide. This study aims to develop a feasible, environmentally friendly, and rapid method for quantifying HexA content in non-wood pulp using FT-NIR spectroscopy combined with chemometric modeling. The HexA levels were measured in 44 non-wood pulp samples to validate the approach. The same samples were analyzed using FT-NIR spectroscopy, and the obtained spectral data were preprocessed using Savitzky–Golay (S–G) smoothing followed by first and second derivatives, a common approach in chemometric analysis. Principal component regression (PCR) and partial least squares regression (PLSR) were evaluated for HexA quantification using both raw and pretreated FT-NIR spectra. The PLSR model demonstrated superior predictive performance (R 2 = 94.24%) when applied to FT-NIR data preprocessed with Savitzky–Golay filtering, derivatives, and leverage correction. Finally, the validated model exhibited excellent accuracy in predicting HexA content in unknown non-wood pulp samples, achieving a high correlation coefficient (r = 0.993).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信