ga掺杂CeO2固溶体作为cu基催化剂的促进剂:通过优化金属-载体相互作用增强CO2加氢制甲醇

IF 1.9 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Tuo Guo, Wenwen Liu, Panpan Yang, Qingjie Guo, Pei Sean Goh
{"title":"ga掺杂CeO2固溶体作为cu基催化剂的促进剂:通过优化金属-载体相互作用增强CO2加氢制甲醇","authors":"Tuo Guo,&nbsp;Wenwen Liu,&nbsp;Panpan Yang,&nbsp;Qingjie Guo,&nbsp;Pei Sean Goh","doi":"10.1002/cjce.25721","DOIUrl":null,"url":null,"abstract":"<p>The low methanol selectivity of Cu/CeO₂ in CO₂ hydrogenation stems from weak metal–support interaction (MSI) and dominant reverse water gas shift (RWGS) pathways. Ga-doped CeO₂ solid solutions are proposed to enhance MSI and oxygen vacancies, addressing insufficient CO₂ activation and H₂ dissociation in conventional Cu-based catalysts. CuO-CeGaₓOₓ (<i>y</i> = 0–0.3) catalysts were synthesized via co-precipitation. Structural and catalytic properties were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed H<sub>2</sub> reduction (H₂-TPR), temperature-programmed desorption of adsorbed CO<sub>2</sub> (CO₂-TPD), and transmission electron microscopy (TEM). Ga doping (<i>y</i> = 0.2) optimized CeGaOₓ solid solution formation, achieving the highest specific surface area (142 m<sup>2</sup>/g), and Cu<sup>0</sup> content (73.4%). At 260°C, CuO-CeGa₀.₂Oₓ showed 12.6% X<sub>CO₂</sub>, 57% S<sub>CH₃OH</sub>, and STY = 308.8 g<sub>MeOH</sub> Kgcat<sup>−1</sup> h<sup>−1</sup>. Enhanced oxygen vacancies and moderate basic sites suppressed RWGS, favouring methanol pathways. Stability tests confirmed 180 h performance retention without structural degradation. Ga doping strengthens MSI via CeGaOₓ solid solutions, promoting oxygen vacancies and Cu<sup>0</sup> dispersion. This dual optimization enhances CO₂ adsorption, H₂ dissociation, and methanol selectivity while suppressing CO byproducts. The CuO-CeGa₀.₂Oₓ catalyst demonstrates industrial potential, offering a design strategy for high-performance CO₂ hydrogenation catalysts.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 11","pages":"5398-5409"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ga-doped CeO2 solid solutions as promoters for Cu-based catalysts: Enhancing CO2 hydrogenation to methanol via optimized metal–support interaction\",\"authors\":\"Tuo Guo,&nbsp;Wenwen Liu,&nbsp;Panpan Yang,&nbsp;Qingjie Guo,&nbsp;Pei Sean Goh\",\"doi\":\"10.1002/cjce.25721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The low methanol selectivity of Cu/CeO₂ in CO₂ hydrogenation stems from weak metal–support interaction (MSI) and dominant reverse water gas shift (RWGS) pathways. Ga-doped CeO₂ solid solutions are proposed to enhance MSI and oxygen vacancies, addressing insufficient CO₂ activation and H₂ dissociation in conventional Cu-based catalysts. CuO-CeGaₓOₓ (<i>y</i> = 0–0.3) catalysts were synthesized via co-precipitation. Structural and catalytic properties were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed H<sub>2</sub> reduction (H₂-TPR), temperature-programmed desorption of adsorbed CO<sub>2</sub> (CO₂-TPD), and transmission electron microscopy (TEM). Ga doping (<i>y</i> = 0.2) optimized CeGaOₓ solid solution formation, achieving the highest specific surface area (142 m<sup>2</sup>/g), and Cu<sup>0</sup> content (73.4%). At 260°C, CuO-CeGa₀.₂Oₓ showed 12.6% X<sub>CO₂</sub>, 57% S<sub>CH₃OH</sub>, and STY = 308.8 g<sub>MeOH</sub> Kgcat<sup>−1</sup> h<sup>−1</sup>. Enhanced oxygen vacancies and moderate basic sites suppressed RWGS, favouring methanol pathways. Stability tests confirmed 180 h performance retention without structural degradation. Ga doping strengthens MSI via CeGaOₓ solid solutions, promoting oxygen vacancies and Cu<sup>0</sup> dispersion. This dual optimization enhances CO₂ adsorption, H₂ dissociation, and methanol selectivity while suppressing CO byproducts. The CuO-CeGa₀.₂Oₓ catalyst demonstrates industrial potential, offering a design strategy for high-performance CO₂ hydrogenation catalysts.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":\"103 11\",\"pages\":\"5398-5409\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25721\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25721","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

Cu/ ceo2在CO₂加氢过程中甲醇选择性低的原因是弱金属-载体相互作用(MSI)和主要的逆水气转换(RWGS)途径。提出了掺杂ga的CeO 2固溶体来提高MSI和氧空位,解决传统cu基催化剂CO 2活化和H 2解离不足的问题。采用共沉淀法合成CuO-CeGaₓOₓ(y = 0-0.3)催化剂。通过x射线衍射(XRD)、x射线光电子能谱(XPS)、程序升温H2还原(H₂-TPR)、程序升温解吸吸附CO2 (CO₂-TPD)和透射电镜(TEM)分析了结构和催化性能。Ga掺杂(y = 0.2)优化了CeGaOₓ固溶体的形成,获得了最高的比表面积(142 m2/g)和Cu0含量(73.4%)。在260°C, CuO-CeGa 0。₂Oₓ含有12.6%的XCO₂,57%的SCH₃OH, STY = 308.8 gMeOH Kgcat−1 h−1。增强的氧空位和适度的碱性位点抑制RWGS,有利于甲醇途径。稳定性测试证实了180小时的性能保持,没有结构退化。Ga掺杂通过CeGaOₓ固溶体增强MSI,促进氧空位和Cu0分散。这种双重优化增强了CO₂吸附,H₂解离和甲醇选择性,同时抑制CO副产物。的CuO-CeGa₀。2 Oₓ催化剂展示了工业潜力,提供了高性能CO 2加氢催化剂的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ga-doped CeO2 solid solutions as promoters for Cu-based catalysts: Enhancing CO2 hydrogenation to methanol via optimized metal–support interaction

Ga-doped CeO2 solid solutions as promoters for Cu-based catalysts: Enhancing CO2 hydrogenation to methanol via optimized metal–support interaction

The low methanol selectivity of Cu/CeO₂ in CO₂ hydrogenation stems from weak metal–support interaction (MSI) and dominant reverse water gas shift (RWGS) pathways. Ga-doped CeO₂ solid solutions are proposed to enhance MSI and oxygen vacancies, addressing insufficient CO₂ activation and H₂ dissociation in conventional Cu-based catalysts. CuO-CeGaₓOₓ (y = 0–0.3) catalysts were synthesized via co-precipitation. Structural and catalytic properties were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed H2 reduction (H₂-TPR), temperature-programmed desorption of adsorbed CO2 (CO₂-TPD), and transmission electron microscopy (TEM). Ga doping (y = 0.2) optimized CeGaOₓ solid solution formation, achieving the highest specific surface area (142 m2/g), and Cu0 content (73.4%). At 260°C, CuO-CeGa₀.₂Oₓ showed 12.6% XCO₂, 57% SCH₃OH, and STY = 308.8 gMeOH Kgcat−1 h−1. Enhanced oxygen vacancies and moderate basic sites suppressed RWGS, favouring methanol pathways. Stability tests confirmed 180 h performance retention without structural degradation. Ga doping strengthens MSI via CeGaOₓ solid solutions, promoting oxygen vacancies and Cu0 dispersion. This dual optimization enhances CO₂ adsorption, H₂ dissociation, and methanol selectivity while suppressing CO byproducts. The CuO-CeGa₀.₂Oₓ catalyst demonstrates industrial potential, offering a design strategy for high-performance CO₂ hydrogenation catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Chemical Engineering
Canadian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.60
自引率
14.30%
发文量
448
审稿时长
3.2 months
期刊介绍: The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信