{"title":"聚(2,5-苯并咪唑)作为溶剂脱水膜材料:结合甲磺酸的影响","authors":"Lavanya Alladi, Ashish K. Lele, Ulhas K. Kharul","doi":"10.1002/app.57708","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Towards addressing issues of solvent stability of polymeric membrane materials for pervaporation (PV), this work investigates thermochemically robust poly(<i>2,5</i>-benzimidazole) (ABPBI) bound with methane sulfonic acid (MSA) for solvent dehydration, for the first time to our knowledge. Phase inversion membranes with and without bound-MSA were prepared, thermally treated at different temperatures up to 350°C, and analyzed for physical and pervaporation properties. The physical characterizations (FTIR, WAXD, TGA, XPS, SEM, and EDX) and sorption analysis were performed using flat sheet membranes, whereas hollow fiber membranes were used for the pervaporation analysis with chosen solvents (alcohols and two polar aprotic solvents). Physical characterizations established the presence of MSA and the nonporous, dense nature of membranes, irrespective of their treatment temperatures. The sorption of pure solvents in the membrane is primarily affected by thermal treatment of the membranes. The pervaporation analysis was performed using different solvent: Water feed compositions. Using 85:15 as the feed, the average separation factors for dehydration of isopropanol, acetonitrile, and <i>N</i>,<i>N-</i>dimethylformamide (DMF) were 393, 213, and 185, respectively, with an appreciable “pervaporation separation index.” The long-term membrane performance till 360 h was analyzed to shed light on practical applicability.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 44","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly(2,5-Benzimidazole) as a Membrane Material for Solvent Dehydration: Effect of Bound Methanesulfonic Acid\",\"authors\":\"Lavanya Alladi, Ashish K. Lele, Ulhas K. Kharul\",\"doi\":\"10.1002/app.57708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Towards addressing issues of solvent stability of polymeric membrane materials for pervaporation (PV), this work investigates thermochemically robust poly(<i>2,5</i>-benzimidazole) (ABPBI) bound with methane sulfonic acid (MSA) for solvent dehydration, for the first time to our knowledge. Phase inversion membranes with and without bound-MSA were prepared, thermally treated at different temperatures up to 350°C, and analyzed for physical and pervaporation properties. The physical characterizations (FTIR, WAXD, TGA, XPS, SEM, and EDX) and sorption analysis were performed using flat sheet membranes, whereas hollow fiber membranes were used for the pervaporation analysis with chosen solvents (alcohols and two polar aprotic solvents). Physical characterizations established the presence of MSA and the nonporous, dense nature of membranes, irrespective of their treatment temperatures. The sorption of pure solvents in the membrane is primarily affected by thermal treatment of the membranes. The pervaporation analysis was performed using different solvent: Water feed compositions. Using 85:15 as the feed, the average separation factors for dehydration of isopropanol, acetonitrile, and <i>N</i>,<i>N-</i>dimethylformamide (DMF) were 393, 213, and 185, respectively, with an appreciable “pervaporation separation index.” The long-term membrane performance till 360 h was analyzed to shed light on practical applicability.</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 44\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.57708\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.57708","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Poly(2,5-Benzimidazole) as a Membrane Material for Solvent Dehydration: Effect of Bound Methanesulfonic Acid
Towards addressing issues of solvent stability of polymeric membrane materials for pervaporation (PV), this work investigates thermochemically robust poly(2,5-benzimidazole) (ABPBI) bound with methane sulfonic acid (MSA) for solvent dehydration, for the first time to our knowledge. Phase inversion membranes with and without bound-MSA were prepared, thermally treated at different temperatures up to 350°C, and analyzed for physical and pervaporation properties. The physical characterizations (FTIR, WAXD, TGA, XPS, SEM, and EDX) and sorption analysis were performed using flat sheet membranes, whereas hollow fiber membranes were used for the pervaporation analysis with chosen solvents (alcohols and two polar aprotic solvents). Physical characterizations established the presence of MSA and the nonporous, dense nature of membranes, irrespective of their treatment temperatures. The sorption of pure solvents in the membrane is primarily affected by thermal treatment of the membranes. The pervaporation analysis was performed using different solvent: Water feed compositions. Using 85:15 as the feed, the average separation factors for dehydration of isopropanol, acetonitrile, and N,N-dimethylformamide (DMF) were 393, 213, and 185, respectively, with an appreciable “pervaporation separation index.” The long-term membrane performance till 360 h was analyzed to shed light on practical applicability.
期刊介绍:
The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.