柯克伍德-狄拉克非经典性在量子转向上的优势

IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Bingke Zheng, Zhihua Guo, Huaixin Cao, Zhihao Ma, Zhihua Chen, Shao-Ming Fei
{"title":"柯克伍德-狄拉克非经典性在量子转向上的优势","authors":"Bingke Zheng,&nbsp;Zhihua Guo,&nbsp;Huaixin Cao,&nbsp;Zhihao Ma,&nbsp;Zhihua Chen,&nbsp;Shao-Ming Fei","doi":"10.1007/s11433-025-2785-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Kirkwood-Dirac (KD) distribution is a vital framework in quantum state characterization, which reveals nonclassical correlations through phase-space representations. In this work, we introduce trace-norm-based measures to assess the KD-nonclassicality of quantum states and derive the corresponding trade-off relations for qubit and qutrit systems. For a bipartite state shared by Alice and Bob and a set of measurements applied by Alice, the maximum value of the totally averaged quantum resource of Bob’s states is introduced with respect to a quantum resource quantifier. When the maximum value exceeds the upper bound in a trade-off relation, the bipartite state is said to exhibit nonlocal advantages of quantum resource (NAQR). We prove that a state exhibiting NAQR, such as nonlocal advantages of KD-nonclassicality (NAKDNC), is steerable from Alice to Bob. We demonstrate that NAKDNC of Werner states exhibit much more quantum steering than quantum coherence and quantum imaginarity do and also explore NAKDNC of the two-qutrit isotropic states. These findings emerge KD-nonclassicality as an independent nonclassical resource with operational relevance in quantum information protocols.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"69 2","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kirkwood-Dirac nonclassicality advantages on quantum steering\",\"authors\":\"Bingke Zheng,&nbsp;Zhihua Guo,&nbsp;Huaixin Cao,&nbsp;Zhihao Ma,&nbsp;Zhihua Chen,&nbsp;Shao-Ming Fei\",\"doi\":\"10.1007/s11433-025-2785-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Kirkwood-Dirac (KD) distribution is a vital framework in quantum state characterization, which reveals nonclassical correlations through phase-space representations. In this work, we introduce trace-norm-based measures to assess the KD-nonclassicality of quantum states and derive the corresponding trade-off relations for qubit and qutrit systems. For a bipartite state shared by Alice and Bob and a set of measurements applied by Alice, the maximum value of the totally averaged quantum resource of Bob’s states is introduced with respect to a quantum resource quantifier. When the maximum value exceeds the upper bound in a trade-off relation, the bipartite state is said to exhibit nonlocal advantages of quantum resource (NAQR). We prove that a state exhibiting NAQR, such as nonlocal advantages of KD-nonclassicality (NAKDNC), is steerable from Alice to Bob. We demonstrate that NAKDNC of Werner states exhibit much more quantum steering than quantum coherence and quantum imaginarity do and also explore NAKDNC of the two-qutrit isotropic states. These findings emerge KD-nonclassicality as an independent nonclassical resource with operational relevance in quantum information protocols.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"69 2\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2785-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2785-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Kirkwood-Dirac (KD)分布是量子态表征的一个重要框架,它通过相空间表示揭示了非经典相关性。在这项工作中,我们引入了基于跟踪规范的度量来评估量子态的kd -非经典性,并推导了量子比特和量子系统的相应权衡关系。对于Alice和Bob共享的二部态和Alice应用的一组测量,引入了Bob状态的全平均量子资源的最大值。当在权衡关系中最大值超过上界时,二部态表现出量子资源的非局部优势(NAQR)。我们证明了一个表现出NAQR的状态,如kd -非经典性的非局部优势(NAKDNC),可以从Alice转向Bob。我们证明了Werner态的NAKDNC比量子相干性和量子虚性表现出更多的量子方向性,并探索了双量子位各向同性态的NAKDNC。这些发现表明kd -非经典性是量子信息协议中具有操作相关性的独立非经典资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kirkwood-Dirac nonclassicality advantages on quantum steering

The Kirkwood-Dirac (KD) distribution is a vital framework in quantum state characterization, which reveals nonclassical correlations through phase-space representations. In this work, we introduce trace-norm-based measures to assess the KD-nonclassicality of quantum states and derive the corresponding trade-off relations for qubit and qutrit systems. For a bipartite state shared by Alice and Bob and a set of measurements applied by Alice, the maximum value of the totally averaged quantum resource of Bob’s states is introduced with respect to a quantum resource quantifier. When the maximum value exceeds the upper bound in a trade-off relation, the bipartite state is said to exhibit nonlocal advantages of quantum resource (NAQR). We prove that a state exhibiting NAQR, such as nonlocal advantages of KD-nonclassicality (NAKDNC), is steerable from Alice to Bob. We demonstrate that NAKDNC of Werner states exhibit much more quantum steering than quantum coherence and quantum imaginarity do and also explore NAKDNC of the two-qutrit isotropic states. These findings emerge KD-nonclassicality as an independent nonclassical resource with operational relevance in quantum information protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信