具有高倍率性能和优异循环稳定性的镍注入硅-氮-碳纳米复合阳极

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jianglin He, Xun Gan, Xinran He, Kai Zhang and Yuehua Cui
{"title":"具有高倍率性能和优异循环稳定性的镍注入硅-氮-碳纳米复合阳极","authors":"Jianglin He, Xun Gan, Xinran He, Kai Zhang and Yuehua Cui","doi":"10.1039/D5NJ02311D","DOIUrl":null,"url":null,"abstract":"<p >Silicon (Si) is highly regarded in lithium-ion battery anode material research due to its exceptional theoretical capacity of ∼4200 mAh g<small><sup>−1</sup></small>. However, its practical application is limited by severe volumetric expansion during charge and discharge cycles. This study presents a simple and efficient method by depositing a nickel oxalate (NiC<small><sub>2</sub></small>O<small><sub>4</sub></small>) precursor on the surface of silicon nanoparticles, followed by coating with polyaniline and then thermally decomposing to prepare nitrogen-doped Si/Ni/C composite materials (Si/Ni/NC). At a current density of 1000 mA g<small><sup>−1</sup></small>, the material exhibited notable electrochemical performance, with initial charge and discharge capacities of 1786.54 mAh g<small><sup>−1</sup></small> and 2186.43 mAh g<small><sup>−1</sup></small>, respectively, and a discharge capacity retention of 961.49 mAh g<small><sup>−1</sup></small> after 200 cycles. The superior performance is attributed to the multiple optimizations of the material structure: the introduction of nickel forms a silicon–nickel alloy that significantly enhances conductivity and alleviates volumetric expansion; the carbon coating enhances the stability of the SEI film, and nitrogen-doped carbon layers reduce lithium-ion migration barriers, promoting electron transport, thus ensuring high-rate performance and cycling stability.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 40","pages":" 17447-17458"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nickel-infused silicon–nitrogen–carbon nanocomposite anodes with high rate capability and excellent cycle stability for lithium-ion batteries\",\"authors\":\"Jianglin He, Xun Gan, Xinran He, Kai Zhang and Yuehua Cui\",\"doi\":\"10.1039/D5NJ02311D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silicon (Si) is highly regarded in lithium-ion battery anode material research due to its exceptional theoretical capacity of ∼4200 mAh g<small><sup>−1</sup></small>. However, its practical application is limited by severe volumetric expansion during charge and discharge cycles. This study presents a simple and efficient method by depositing a nickel oxalate (NiC<small><sub>2</sub></small>O<small><sub>4</sub></small>) precursor on the surface of silicon nanoparticles, followed by coating with polyaniline and then thermally decomposing to prepare nitrogen-doped Si/Ni/C composite materials (Si/Ni/NC). At a current density of 1000 mA g<small><sup>−1</sup></small>, the material exhibited notable electrochemical performance, with initial charge and discharge capacities of 1786.54 mAh g<small><sup>−1</sup></small> and 2186.43 mAh g<small><sup>−1</sup></small>, respectively, and a discharge capacity retention of 961.49 mAh g<small><sup>−1</sup></small> after 200 cycles. The superior performance is attributed to the multiple optimizations of the material structure: the introduction of nickel forms a silicon–nickel alloy that significantly enhances conductivity and alleviates volumetric expansion; the carbon coating enhances the stability of the SEI film, and nitrogen-doped carbon layers reduce lithium-ion migration barriers, promoting electron transport, thus ensuring high-rate performance and cycling stability.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 40\",\"pages\":\" 17447-17458\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02311d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02311d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅(Si)在锂离子电池负极材料研究中受到高度重视,因为它具有优异的理论容量(~ 4200 mAh g−1)。然而,它的实际应用受到严重的体积膨胀在充放电循环。本研究提出了一种简单有效的方法,即在硅纳米颗粒表面沉积草酸镍(NiC2O4)前驱体,然后涂覆聚苯胺,然后热分解制备氮掺杂Si/Ni/C复合材料(Si/Ni/NC)。在电流密度为1000 mA g−1时,材料表现出显著的电化学性能,初始充放电容量分别为1786.54 mAh g−1和2186.43 mAh g−1,200次循环后放电容量保持为961.49 mAh g−1。优异的性能归功于材料结构的多重优化:镍的引入形成了硅镍合金,显著提高了导电性,减轻了体积膨胀;碳涂层增强了SEI膜的稳定性,氮掺杂碳层降低了锂离子迁移障碍,促进了电子传递,从而保证了高速率性能和循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nickel-infused silicon–nitrogen–carbon nanocomposite anodes with high rate capability and excellent cycle stability for lithium-ion batteries

Nickel-infused silicon–nitrogen–carbon nanocomposite anodes with high rate capability and excellent cycle stability for lithium-ion batteries

Silicon (Si) is highly regarded in lithium-ion battery anode material research due to its exceptional theoretical capacity of ∼4200 mAh g−1. However, its practical application is limited by severe volumetric expansion during charge and discharge cycles. This study presents a simple and efficient method by depositing a nickel oxalate (NiC2O4) precursor on the surface of silicon nanoparticles, followed by coating with polyaniline and then thermally decomposing to prepare nitrogen-doped Si/Ni/C composite materials (Si/Ni/NC). At a current density of 1000 mA g−1, the material exhibited notable electrochemical performance, with initial charge and discharge capacities of 1786.54 mAh g−1 and 2186.43 mAh g−1, respectively, and a discharge capacity retention of 961.49 mAh g−1 after 200 cycles. The superior performance is attributed to the multiple optimizations of the material structure: the introduction of nickel forms a silicon–nickel alloy that significantly enhances conductivity and alleviates volumetric expansion; the carbon coating enhances the stability of the SEI film, and nitrogen-doped carbon layers reduce lithium-ion migration barriers, promoting electron transport, thus ensuring high-rate performance and cycling stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信