过渡金属氧化物/硫族化物集成MXene异质结构:超级电容器和水分解的新兴材料

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sandra Mathew, Kalathiparambil Rajendra Pai Sunajadevi and Dephan Pinheiro
{"title":"过渡金属氧化物/硫族化物集成MXene异质结构:超级电容器和水分解的新兴材料","authors":"Sandra Mathew, Kalathiparambil Rajendra Pai Sunajadevi and Dephan Pinheiro","doi":"10.1039/D5MA00706B","DOIUrl":null,"url":null,"abstract":"<p >The growing global demand for sustainable energy solutions necessitates advancements in energy storage and conversion technologies, aligning with the United Nations’ sustainable development goals. MXenes, a novel class of two-dimensional (2D) materials discovered in 2011, have demonstrated immense potential in these fields. Their high surface area, expanded interlayer spacing, metallic conductivity, biocompatibility, abundant redox-active sites, and hydrophilicity make them highly promising for supercapacitors and water-splitting applications. However, MXene layers are prone to agglomeration due to hydrogen bonding and van der Waals interactions, which reduce the active surface area, obscure reaction sites, and hinder ion transport pathways. To overcome these challenges, hybridizing MXenes with transition metal oxides (TMOs) and transition metal chalcogenides (TMCs) can effectively prevent restacking while introducing synergistic functionalities that enhance their overall properties. This review first provides an in-depth discussion on MXene/TMO and MXene/TMC composites for supercapacitors, highlighting their structural advantages and synergistic interactions. It then explores their efficiency in electrocatalytic water splitting, examining their role in enhancing reaction kinetics and overall performance. Finally, the review addresses key challenges, including large-scale synthesis, structural stability, and long-term durability, while offering future research perspectives aimed at optimizing material design, improving performance, and advancing real-world applications in energy storage and conversion.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 20","pages":" 7207-7230"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00706b?page=search","citationCount":"0","resultStr":"{\"title\":\"Transition metal oxide/chalcogenide-integrated MXene heterostructures: emerging materials for supercapacitors and water splitting\",\"authors\":\"Sandra Mathew, Kalathiparambil Rajendra Pai Sunajadevi and Dephan Pinheiro\",\"doi\":\"10.1039/D5MA00706B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The growing global demand for sustainable energy solutions necessitates advancements in energy storage and conversion technologies, aligning with the United Nations’ sustainable development goals. MXenes, a novel class of two-dimensional (2D) materials discovered in 2011, have demonstrated immense potential in these fields. Their high surface area, expanded interlayer spacing, metallic conductivity, biocompatibility, abundant redox-active sites, and hydrophilicity make them highly promising for supercapacitors and water-splitting applications. However, MXene layers are prone to agglomeration due to hydrogen bonding and van der Waals interactions, which reduce the active surface area, obscure reaction sites, and hinder ion transport pathways. To overcome these challenges, hybridizing MXenes with transition metal oxides (TMOs) and transition metal chalcogenides (TMCs) can effectively prevent restacking while introducing synergistic functionalities that enhance their overall properties. This review first provides an in-depth discussion on MXene/TMO and MXene/TMC composites for supercapacitors, highlighting their structural advantages and synergistic interactions. It then explores their efficiency in electrocatalytic water splitting, examining their role in enhancing reaction kinetics and overall performance. Finally, the review addresses key challenges, including large-scale synthesis, structural stability, and long-term durability, while offering future research perspectives aimed at optimizing material design, improving performance, and advancing real-world applications in energy storage and conversion.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 20\",\"pages\":\" 7207-7230\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00706b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00706b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00706b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球对可持续能源解决方案的需求不断增长,需要在能源存储和转换技术方面取得进步,与联合国的可持续发展目标保持一致。MXenes是2011年发现的一种新型二维(2D)材料,在这些领域展示了巨大的潜力。它们的高表面积、扩大的层间距、金属导电性、生物相容性、丰富的氧化还原活性位点和亲水性使它们在超级电容器和水分解应用中具有很高的前景。然而,由于氢键和范德华相互作用,MXene层容易聚集,从而减少了活性表面积,模糊了反应位点,阻碍了离子传输途径。为了克服这些挑战,将MXenes与过渡金属氧化物(TMOs)和过渡金属硫族化合物(tmc)杂化可以有效地防止再堆积,同时引入协同功能,增强其整体性能。本文首先对MXene/TMO和MXene/TMC超级电容器复合材料进行了深入的讨论,重点介绍了它们的结构优势和协同作用。然后探讨了它们在电催化水分解中的效率,研究了它们在提高反应动力学和整体性能方面的作用。最后,该综述解决了关键挑战,包括大规模合成,结构稳定性和长期耐久性,同时提供了未来的研究前景,旨在优化材料设计,提高性能,并推进能源存储和转换的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transition metal oxide/chalcogenide-integrated MXene heterostructures: emerging materials for supercapacitors and water splitting

Transition metal oxide/chalcogenide-integrated MXene heterostructures: emerging materials for supercapacitors and water splitting

The growing global demand for sustainable energy solutions necessitates advancements in energy storage and conversion technologies, aligning with the United Nations’ sustainable development goals. MXenes, a novel class of two-dimensional (2D) materials discovered in 2011, have demonstrated immense potential in these fields. Their high surface area, expanded interlayer spacing, metallic conductivity, biocompatibility, abundant redox-active sites, and hydrophilicity make them highly promising for supercapacitors and water-splitting applications. However, MXene layers are prone to agglomeration due to hydrogen bonding and van der Waals interactions, which reduce the active surface area, obscure reaction sites, and hinder ion transport pathways. To overcome these challenges, hybridizing MXenes with transition metal oxides (TMOs) and transition metal chalcogenides (TMCs) can effectively prevent restacking while introducing synergistic functionalities that enhance their overall properties. This review first provides an in-depth discussion on MXene/TMO and MXene/TMC composites for supercapacitors, highlighting their structural advantages and synergistic interactions. It then explores their efficiency in electrocatalytic water splitting, examining their role in enhancing reaction kinetics and overall performance. Finally, the review addresses key challenges, including large-scale synthesis, structural stability, and long-term durability, while offering future research perspectives aimed at optimizing material design, improving performance, and advancing real-world applications in energy storage and conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信