Hao He, Zhao Yu, Yongsheng Hu, Shenmin Zhu, Yanyu Li, Yanjie Liu, Yue Miao, Yao Li and Di Zhang
{"title":"用于阳极均匀锂沉积的氧化镍改性泡沫镍集流器","authors":"Hao He, Zhao Yu, Yongsheng Hu, Shenmin Zhu, Yanyu Li, Yanjie Liu, Yue Miao, Yao Li and Di Zhang","doi":"10.1039/D5MA00669D","DOIUrl":null,"url":null,"abstract":"<p >Lithium metal anodes, possessing a high theoretical specific capacity of 3860 mAh g<small><sup>−1</sup></small> and a low potential (−3.04 V <em>vs.</em> the standard hydrogen electrode), represent a promising direction for advanced energy-storage technology. Nevertheless, the uncontrolled dendritic growth of lithium metal, resulting in poor reversibility and substantial volume changes, significantly impedes the practical implementation of lithium metal batteries. This study introduces nickel oxide nanoparticles as lithiophilic sites on the 3D skeleton of nickel foam (NF) as a 3D current collector (NF-NiO) to promote dendrite-free Li deposition. The NiO nanoparticles effectively modulated Li–metal deposition morphology, reducing the formation of multiple interfacial layers that could cause phase separation and high electrochemical polarization. The nickel foam annealed at 450 °C (NF-NiO450) as a current collector achieved an average Li–metal plating/stripping Coulombic efficiency (CE) of 97.7% for 330 cycles, significantly outperforming neat NF (∼96.6%), which lasted only 75 cycles. The LiFePO<small><sub>4</sub></small>‖NF-NiO450 (prelithitated to a negative-to-positive areal capacity ratio, N/P ratio ≈ 1.51) cell demonstrated superior rate capability and maintained 92.42% capacity retention over 160 cycles. This engineered 3D current collector design advances the development of high-energy, long-life lithium metal batteries.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 20","pages":" 7609-7617"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00669d?page=search","citationCount":"0","resultStr":"{\"title\":\"Nickel oxide-modified nickel foam current collectors for uniform lithium deposition at the anode\",\"authors\":\"Hao He, Zhao Yu, Yongsheng Hu, Shenmin Zhu, Yanyu Li, Yanjie Liu, Yue Miao, Yao Li and Di Zhang\",\"doi\":\"10.1039/D5MA00669D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium metal anodes, possessing a high theoretical specific capacity of 3860 mAh g<small><sup>−1</sup></small> and a low potential (−3.04 V <em>vs.</em> the standard hydrogen electrode), represent a promising direction for advanced energy-storage technology. Nevertheless, the uncontrolled dendritic growth of lithium metal, resulting in poor reversibility and substantial volume changes, significantly impedes the practical implementation of lithium metal batteries. This study introduces nickel oxide nanoparticles as lithiophilic sites on the 3D skeleton of nickel foam (NF) as a 3D current collector (NF-NiO) to promote dendrite-free Li deposition. The NiO nanoparticles effectively modulated Li–metal deposition morphology, reducing the formation of multiple interfacial layers that could cause phase separation and high electrochemical polarization. The nickel foam annealed at 450 °C (NF-NiO450) as a current collector achieved an average Li–metal plating/stripping Coulombic efficiency (CE) of 97.7% for 330 cycles, significantly outperforming neat NF (∼96.6%), which lasted only 75 cycles. The LiFePO<small><sub>4</sub></small>‖NF-NiO450 (prelithitated to a negative-to-positive areal capacity ratio, N/P ratio ≈ 1.51) cell demonstrated superior rate capability and maintained 92.42% capacity retention over 160 cycles. This engineered 3D current collector design advances the development of high-energy, long-life lithium metal batteries.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 20\",\"pages\":\" 7609-7617\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00669d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00669d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00669d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
锂金属阳极具有3860 mAh g - 1的高理论比容量和低电势(与标准氢电极相比为- 3.04 V),代表了先进储能技术的一个有前途的方向。然而,由于锂金属的枝晶生长不受控制,导致可逆性差,体积变化大,严重阻碍了锂金属电池的实际实施。本研究将氧化镍纳米颗粒作为亲锂位点引入泡沫镍(NF)三维骨架上,作为三维集流剂(NF- nio)促进无枝晶锂沉积。NiO纳米颗粒有效地调节了锂金属的沉积形态,减少了可能导致相分离和高电化学极化的多界面层的形成。在450°C退火的泡沫镍(NF- nio450)作为电流集热器,在330次循环中获得了97.7%的平均锂金属电镀/剥离库仑效率(CE),显著优于仅持续75次循环的纯泡沫镍(~ 96.6%)。LiFePO4‖fn - nio450(预lithitated to- to-positive area capacity ratio, N/P ratio≈1.51)电池表现出优越的倍率能力,并在160次循环中保持92.42%的容量保持率。这种工程化的3D集流器设计推动了高能、长寿命锂金属电池的发展。
Nickel oxide-modified nickel foam current collectors for uniform lithium deposition at the anode
Lithium metal anodes, possessing a high theoretical specific capacity of 3860 mAh g−1 and a low potential (−3.04 V vs. the standard hydrogen electrode), represent a promising direction for advanced energy-storage technology. Nevertheless, the uncontrolled dendritic growth of lithium metal, resulting in poor reversibility and substantial volume changes, significantly impedes the practical implementation of lithium metal batteries. This study introduces nickel oxide nanoparticles as lithiophilic sites on the 3D skeleton of nickel foam (NF) as a 3D current collector (NF-NiO) to promote dendrite-free Li deposition. The NiO nanoparticles effectively modulated Li–metal deposition morphology, reducing the formation of multiple interfacial layers that could cause phase separation and high electrochemical polarization. The nickel foam annealed at 450 °C (NF-NiO450) as a current collector achieved an average Li–metal plating/stripping Coulombic efficiency (CE) of 97.7% for 330 cycles, significantly outperforming neat NF (∼96.6%), which lasted only 75 cycles. The LiFePO4‖NF-NiO450 (prelithitated to a negative-to-positive areal capacity ratio, N/P ratio ≈ 1.51) cell demonstrated superior rate capability and maintained 92.42% capacity retention over 160 cycles. This engineered 3D current collector design advances the development of high-energy, long-life lithium metal batteries.