{"title":"几乎100%的极性范德华物质自发卷起。","authors":"Zhi Zhang,Yuwei Zhang,Kangjun Lu,Jun-Jie Zhang,Nannan Zhang,Rui Feng,Haoran Ye,Xiaoli Zhou,Linglong Li,Dongyang Wan,Junpeng Lu,Zhenhua Ni,Jinlan Wang,Qian Chen,Jiong Lu,Zejun Li","doi":"10.1038/s41563-025-02357-w","DOIUrl":null,"url":null,"abstract":"Rolling two-dimensional materials into one-dimensional nanoscrolls introduces curvature, chirality and symmetry breaking, enabling emergent properties. Conventional methods relying on external driving forces, however, exhibit poor control, low yield and limited reproducibility. Here we report spontaneous scrolling in polar van der Waals materials via an electrochemical intercalation/exfoliation process, enabling scalable nanoscroll production. This self-rolling is driven intrinsically by out-of-plane electric polarization (P⊥), where the magnitude of P⊥ is modulated by the intercalant size. Validated across eight polar materials, this approach achieves virtually 100% yield and reproducibility with defined scrolling direction, surpassing external driving force limitations. The nanoscrolls exhibit layer-independent inversion symmetry breaking and coherently enhanced second-harmonic generation, exceeding two-dimensional flakes by ~100-fold and rivalling leading two-dimensional nonlinear materials. Electrochemical initiation further facilitates metal-ion co-intercalation, yielding ten hybrid nanoscroll architectures. These findings establish a scalable route to create one-dimensional nanostructures and hybrid heterostructures, paving the way for designer quantum solids and van der Waals superlattices in quantum nanodevices.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"41 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-100% spontaneous rolling up of polar van der Waals materials.\",\"authors\":\"Zhi Zhang,Yuwei Zhang,Kangjun Lu,Jun-Jie Zhang,Nannan Zhang,Rui Feng,Haoran Ye,Xiaoli Zhou,Linglong Li,Dongyang Wan,Junpeng Lu,Zhenhua Ni,Jinlan Wang,Qian Chen,Jiong Lu,Zejun Li\",\"doi\":\"10.1038/s41563-025-02357-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rolling two-dimensional materials into one-dimensional nanoscrolls introduces curvature, chirality and symmetry breaking, enabling emergent properties. Conventional methods relying on external driving forces, however, exhibit poor control, low yield and limited reproducibility. Here we report spontaneous scrolling in polar van der Waals materials via an electrochemical intercalation/exfoliation process, enabling scalable nanoscroll production. This self-rolling is driven intrinsically by out-of-plane electric polarization (P⊥), where the magnitude of P⊥ is modulated by the intercalant size. Validated across eight polar materials, this approach achieves virtually 100% yield and reproducibility with defined scrolling direction, surpassing external driving force limitations. The nanoscrolls exhibit layer-independent inversion symmetry breaking and coherently enhanced second-harmonic generation, exceeding two-dimensional flakes by ~100-fold and rivalling leading two-dimensional nonlinear materials. Electrochemical initiation further facilitates metal-ion co-intercalation, yielding ten hybrid nanoscroll architectures. These findings establish a scalable route to create one-dimensional nanostructures and hybrid heterostructures, paving the way for designer quantum solids and van der Waals superlattices in quantum nanodevices.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02357-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02357-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Near-100% spontaneous rolling up of polar van der Waals materials.
Rolling two-dimensional materials into one-dimensional nanoscrolls introduces curvature, chirality and symmetry breaking, enabling emergent properties. Conventional methods relying on external driving forces, however, exhibit poor control, low yield and limited reproducibility. Here we report spontaneous scrolling in polar van der Waals materials via an electrochemical intercalation/exfoliation process, enabling scalable nanoscroll production. This self-rolling is driven intrinsically by out-of-plane electric polarization (P⊥), where the magnitude of P⊥ is modulated by the intercalant size. Validated across eight polar materials, this approach achieves virtually 100% yield and reproducibility with defined scrolling direction, surpassing external driving force limitations. The nanoscrolls exhibit layer-independent inversion symmetry breaking and coherently enhanced second-harmonic generation, exceeding two-dimensional flakes by ~100-fold and rivalling leading two-dimensional nonlinear materials. Electrochemical initiation further facilitates metal-ion co-intercalation, yielding ten hybrid nanoscroll architectures. These findings establish a scalable route to create one-dimensional nanostructures and hybrid heterostructures, paving the way for designer quantum solids and van der Waals superlattices in quantum nanodevices.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.