高压固态锂金属电池高导电性三维介质骨架

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Bangzhuang Xue , Lihan Chen , Jian Ma, Xianzhun Huang, Feiyu Su, Jian Fu, Weiwei Ping, Hongfa Xiang
{"title":"高压固态锂金属电池高导电性三维介质骨架","authors":"Bangzhuang Xue ,&nbsp;Lihan Chen ,&nbsp;Jian Ma,&nbsp;Xianzhun Huang,&nbsp;Feiyu Su,&nbsp;Jian Fu,&nbsp;Weiwei Ping,&nbsp;Hongfa Xiang","doi":"10.1016/j.ensm.2025.104676","DOIUrl":null,"url":null,"abstract":"<div><div>High activation energy of Li<sup>+</sup> transport caused by space charge layer in ceramic-polymer composite electrolytes results in low ion conductivity. Introducing dielectric materials is a promising approach to mitigate this issue. Here, we propose a three-dimensional coupling network for constructing a robust Li transporting pathway by fabricating a BaTiO<sub>3</sub>-Li<sub>0.3</sub>La<sub>0.567</sub>TiO<sub>3</sub> dielectric skeleton membrane using ultrafast high-temperature sintering and tape casting. The dielectric skeleton is mechanically strong even with a thickness of ∼30 μm. Meanwhile, due to the short sintering time of ∼3 s, the grain sizes of the dielectric skeleton are constrained to ∼180 nm, increasing the polymer filling volume to achieve the “percolation point” in composite materials. The 3D dielectric coupling effects help to mitigate the space charge and acquire a homogeneous Li<sup>+</sup> distribution across the interface, decreasing the activation energy of Li<sup>+</sup>transporting from 0.34 eV to 0.29 eV. After polarized at an electric field, the ion conductivity of the dielectric composite electrolytes improves from 0.19 mS·cm<sup>-1</sup> to 0.24 mS·cm<sup>-1</sup>. The symmetric cell using the polarized dielectric electrolytes exhibits excellent cycling stability for ∼430 h at 0.2 mA·cm<sup>-2</sup>, ∼130 h at 0.4 mA·cm<sup>-2</sup>, and ∼70 h at 1 mA·cm<sup>-2</sup>. The full cell LiFePO<sub>4</sub>/polarized dielectric electrolytes/Li exhibits high-rate performance of nearly 1C (1C=170 mA·g<sup>-1</sup>) and long-term cycling stability (&gt;300 cycles at 50 mA·g<sup>-1</sup>). Pairing with high-voltage cathode LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>, the battery can cycle stably for ∼100 cycles at 20 mA·g<sup>-1</sup>, with a Coulombic efficiency of 98 %. These results open a new avenue for the application of composite electrolytes in energy-storage devices.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"83 ","pages":"Article 104676"},"PeriodicalIF":20.2000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly conductive 3D dielectric skeleton for high voltage solid-state lithium metal batteries\",\"authors\":\"Bangzhuang Xue ,&nbsp;Lihan Chen ,&nbsp;Jian Ma,&nbsp;Xianzhun Huang,&nbsp;Feiyu Su,&nbsp;Jian Fu,&nbsp;Weiwei Ping,&nbsp;Hongfa Xiang\",\"doi\":\"10.1016/j.ensm.2025.104676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High activation energy of Li<sup>+</sup> transport caused by space charge layer in ceramic-polymer composite electrolytes results in low ion conductivity. Introducing dielectric materials is a promising approach to mitigate this issue. Here, we propose a three-dimensional coupling network for constructing a robust Li transporting pathway by fabricating a BaTiO<sub>3</sub>-Li<sub>0.3</sub>La<sub>0.567</sub>TiO<sub>3</sub> dielectric skeleton membrane using ultrafast high-temperature sintering and tape casting. The dielectric skeleton is mechanically strong even with a thickness of ∼30 μm. Meanwhile, due to the short sintering time of ∼3 s, the grain sizes of the dielectric skeleton are constrained to ∼180 nm, increasing the polymer filling volume to achieve the “percolation point” in composite materials. The 3D dielectric coupling effects help to mitigate the space charge and acquire a homogeneous Li<sup>+</sup> distribution across the interface, decreasing the activation energy of Li<sup>+</sup>transporting from 0.34 eV to 0.29 eV. After polarized at an electric field, the ion conductivity of the dielectric composite electrolytes improves from 0.19 mS·cm<sup>-1</sup> to 0.24 mS·cm<sup>-1</sup>. The symmetric cell using the polarized dielectric electrolytes exhibits excellent cycling stability for ∼430 h at 0.2 mA·cm<sup>-2</sup>, ∼130 h at 0.4 mA·cm<sup>-2</sup>, and ∼70 h at 1 mA·cm<sup>-2</sup>. The full cell LiFePO<sub>4</sub>/polarized dielectric electrolytes/Li exhibits high-rate performance of nearly 1C (1C=170 mA·g<sup>-1</sup>) and long-term cycling stability (&gt;300 cycles at 50 mA·g<sup>-1</sup>). Pairing with high-voltage cathode LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>, the battery can cycle stably for ∼100 cycles at 20 mA·g<sup>-1</sup>, with a Coulombic efficiency of 98 %. These results open a new avenue for the application of composite electrolytes in energy-storage devices.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"83 \",\"pages\":\"Article 104676\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725006749\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725006749","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

陶瓷-聚合物复合电解质中空间电荷层导致Li+输运活化能高,导致离子电导率低。引入介电材料是缓解这一问题的一种很有前途的方法。本文采用超快高温烧结和带铸法制备了BaTiO3-Li0.3La0.567TiO3介电骨架膜,提出了一个三维耦合网络,用于构建一个坚固的Li传输通路。即使厚度为~ 30 μm,介质骨架的机械强度也很高。同时,由于烧结时间较短,仅为~ 3 s,因此介电骨架的晶粒尺寸被限制在~ 180 nm,增加了聚合物填充体积,从而达到复合材料中的“渗点”。三维介电耦合效应有助于减轻空间电荷,并在界面上获得均匀的Li+分布,将Li+输运的活化能从0.34 eV降低到0.29 eV。经电场极化后,介质复合电解质的离子电导率由0.19 mS·cm-1提高到0.24 mS·cm-1。使用极化介质电解质的对称电池在0.2 mA·cm-2下表现出优良的循环稳定性,在0.2 mA·cm-2下为~ 430 h,在0.4 mA·cm-2下为~ 130 h,在1 mA·cm-2下为~ 70 h。全电池LiFePO4/极化介质电解质/Li具有近1C (1C=170 mA·g-1)的高倍率性能和长期循环稳定性(50 mA·g-1下300次循环)。与高压阴极LiNi0.8Co0.1Mn0.1O2配对,电池可在20 mA·g-1下稳定循环约100次,库仑效率为98%。这些结果为复合电解质在储能器件中的应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly conductive 3D dielectric skeleton for high voltage solid-state lithium metal batteries
High activation energy of Li+ transport caused by space charge layer in ceramic-polymer composite electrolytes results in low ion conductivity. Introducing dielectric materials is a promising approach to mitigate this issue. Here, we propose a three-dimensional coupling network for constructing a robust Li transporting pathway by fabricating a BaTiO3-Li0.3La0.567TiO3 dielectric skeleton membrane using ultrafast high-temperature sintering and tape casting. The dielectric skeleton is mechanically strong even with a thickness of ∼30 μm. Meanwhile, due to the short sintering time of ∼3 s, the grain sizes of the dielectric skeleton are constrained to ∼180 nm, increasing the polymer filling volume to achieve the “percolation point” in composite materials. The 3D dielectric coupling effects help to mitigate the space charge and acquire a homogeneous Li+ distribution across the interface, decreasing the activation energy of Li+transporting from 0.34 eV to 0.29 eV. After polarized at an electric field, the ion conductivity of the dielectric composite electrolytes improves from 0.19 mS·cm-1 to 0.24 mS·cm-1. The symmetric cell using the polarized dielectric electrolytes exhibits excellent cycling stability for ∼430 h at 0.2 mA·cm-2, ∼130 h at 0.4 mA·cm-2, and ∼70 h at 1 mA·cm-2. The full cell LiFePO4/polarized dielectric electrolytes/Li exhibits high-rate performance of nearly 1C (1C=170 mA·g-1) and long-term cycling stability (>300 cycles at 50 mA·g-1). Pairing with high-voltage cathode LiNi0.8Co0.1Mn0.1O2, the battery can cycle stably for ∼100 cycles at 20 mA·g-1, with a Coulombic efficiency of 98 %. These results open a new avenue for the application of composite electrolytes in energy-storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信