尿素电合成中的混价金属间化合物

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-13 DOI:10.1021/acsnano.5c14949
Gang Lin, Chaoqun Ma, Shuaishuai Xu, Huaifang Zhang, Xiao Ma, Fukai Feng, Yonghui Ren, Yanru Zhang, Wei Lin, Wenbin Cao, Xiangmin Meng, Lijie Zhu, Jing Xia, Qipeng Lu
{"title":"尿素电合成中的混价金属间化合物","authors":"Gang Lin, Chaoqun Ma, Shuaishuai Xu, Huaifang Zhang, Xiao Ma, Fukai Feng, Yonghui Ren, Yanru Zhang, Wei Lin, Wenbin Cao, Xiangmin Meng, Lijie Zhu, Jing Xia, Qipeng Lu","doi":"10.1021/acsnano.5c14949","DOIUrl":null,"url":null,"abstract":"Efficient urea electrosynthesis relies on precisely controlling the kinetics of two parallel reduction reactions, i.e., carbon dioxide (CO<sub>2</sub>) reduction and nitrate (NO<sub>3</sub><sup>–</sup>) reduction. However, a major challenge lies in constructing stable and different active sites at the atomic scale, which are essential for synchronizing the reaction kinetics of these two reactions and facilitating C–N coupling. Herein, we introduce a mixed-valence intermetallic compound (Mv-IMC) Cu<sub>2</sub>Sb, featuring Cu<sup>+</sup>–Cu<sup>2+</sup> dual-sites as modular building blocks to regulate and synchronize CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup> reduction kinetics. Mechanistic studies reveal that the constructed dual-sites stabilize *CO and *NO intermediates, lower the energy barrier of C–N coupling, and significantly enhance the urea synthesis efficiency. The Cu<sub>2</sub>Sb catalyst achieves a urea yield of 22.9 mmol h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup> with a Faradaic efficiency of 64.9% at −0.4 V, maintaining stability over 200 h, surpassing most previously reported catalysts. This work pioneers the precise construction of multivalent active sites in Mv-IMCs, establishing a paradigm for designing high-performance electrocatalysts tailored to value-added organic synthesis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"8 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-Valence Intermetallic Compounds for Urea Electrosynthesis\",\"authors\":\"Gang Lin, Chaoqun Ma, Shuaishuai Xu, Huaifang Zhang, Xiao Ma, Fukai Feng, Yonghui Ren, Yanru Zhang, Wei Lin, Wenbin Cao, Xiangmin Meng, Lijie Zhu, Jing Xia, Qipeng Lu\",\"doi\":\"10.1021/acsnano.5c14949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient urea electrosynthesis relies on precisely controlling the kinetics of two parallel reduction reactions, i.e., carbon dioxide (CO<sub>2</sub>) reduction and nitrate (NO<sub>3</sub><sup>–</sup>) reduction. However, a major challenge lies in constructing stable and different active sites at the atomic scale, which are essential for synchronizing the reaction kinetics of these two reactions and facilitating C–N coupling. Herein, we introduce a mixed-valence intermetallic compound (Mv-IMC) Cu<sub>2</sub>Sb, featuring Cu<sup>+</sup>–Cu<sup>2+</sup> dual-sites as modular building blocks to regulate and synchronize CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup> reduction kinetics. Mechanistic studies reveal that the constructed dual-sites stabilize *CO and *NO intermediates, lower the energy barrier of C–N coupling, and significantly enhance the urea synthesis efficiency. The Cu<sub>2</sub>Sb catalyst achieves a urea yield of 22.9 mmol h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup> with a Faradaic efficiency of 64.9% at −0.4 V, maintaining stability over 200 h, surpassing most previously reported catalysts. This work pioneers the precise construction of multivalent active sites in Mv-IMCs, establishing a paradigm for designing high-performance electrocatalysts tailored to value-added organic synthesis.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c14949\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c14949","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高效的尿素电合成依赖于精确控制两个平行还原反应的动力学,即二氧化碳(CO2)还原和硝酸盐(NO3 -)还原。然而,一个主要的挑战在于在原子尺度上构建稳定的和不同的活性位点,这对于同步这两个反应的反应动力学和促进C-N耦合至关重要。在此,我们引入了一种混合价金属间化合物Cu2Sb,以Cu+ - cu2 +双位点为模块构建块来调节和同步CO2和NO3 -还原动力学。机理研究表明,所构建的双位点稳定了*CO和*NO中间体,降低了C-N偶联的能垒,显著提高了尿素合成效率。在−0.4 V下,Cu2Sb催化剂的尿素产率为22.9 mmol h - 1 gcat-1,法拉第效率为64.9%,在200 h内保持稳定,超过了之前报道的大多数催化剂。这项工作开创了Mv-IMCs中多价活性位点的精确构建,为设计适合增值有机合成的高性能电催化剂建立了范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mixed-Valence Intermetallic Compounds for Urea Electrosynthesis

Mixed-Valence Intermetallic Compounds for Urea Electrosynthesis
Efficient urea electrosynthesis relies on precisely controlling the kinetics of two parallel reduction reactions, i.e., carbon dioxide (CO2) reduction and nitrate (NO3) reduction. However, a major challenge lies in constructing stable and different active sites at the atomic scale, which are essential for synchronizing the reaction kinetics of these two reactions and facilitating C–N coupling. Herein, we introduce a mixed-valence intermetallic compound (Mv-IMC) Cu2Sb, featuring Cu+–Cu2+ dual-sites as modular building blocks to regulate and synchronize CO2 and NO3 reduction kinetics. Mechanistic studies reveal that the constructed dual-sites stabilize *CO and *NO intermediates, lower the energy barrier of C–N coupling, and significantly enhance the urea synthesis efficiency. The Cu2Sb catalyst achieves a urea yield of 22.9 mmol h–1 gcat–1 with a Faradaic efficiency of 64.9% at −0.4 V, maintaining stability over 200 h, surpassing most previously reported catalysts. This work pioneers the precise construction of multivalent active sites in Mv-IMCs, establishing a paradigm for designing high-performance electrocatalysts tailored to value-added organic synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信