{"title":"基于多基因评分的表型预测校准预测区间的统计构建。","authors":"Chang Xu,Santhi K Ganesh,Xiang Zhou","doi":"10.1038/s41588-025-02360-6","DOIUrl":null,"url":null,"abstract":"Accurately quantifying uncertainty in predicted phenotypes from polygenic score (PGS)-based applications is essential for reliable clinical interpretation of PGS, supporting effective disease risk assessment and informed decision-making. Here, we present PredInterval, a nonparametric method for constructing well-calibrated prediction intervals. PredInterval is compatible with any PGS method, takes either individual-level data or summary statistics as input and relies on information from quantiles of phenotypic residuals through cross-validation to achieve well-calibrated coverage of true phenotypic values across diverse genetic architectures. We apply PredInterval to analyze 17 traits in real-data applications, where PredInterval not only represents the sole method achieving well-calibrated prediction coverage across traits, but it also offers a principled approach to identify high-risk individuals using prediction intervals, leading to an average improvement of identification rates by 8.7-830.4% compared with existing approaches. Overall, PredInterval represents a robust and versatile tool for enhancing the clinical utility of PGS.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"21 1","pages":""},"PeriodicalIF":29.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical construction of calibrated prediction intervals for polygenic score-based phenotype prediction.\",\"authors\":\"Chang Xu,Santhi K Ganesh,Xiang Zhou\",\"doi\":\"10.1038/s41588-025-02360-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately quantifying uncertainty in predicted phenotypes from polygenic score (PGS)-based applications is essential for reliable clinical interpretation of PGS, supporting effective disease risk assessment and informed decision-making. Here, we present PredInterval, a nonparametric method for constructing well-calibrated prediction intervals. PredInterval is compatible with any PGS method, takes either individual-level data or summary statistics as input and relies on information from quantiles of phenotypic residuals through cross-validation to achieve well-calibrated coverage of true phenotypic values across diverse genetic architectures. We apply PredInterval to analyze 17 traits in real-data applications, where PredInterval not only represents the sole method achieving well-calibrated prediction coverage across traits, but it also offers a principled approach to identify high-risk individuals using prediction intervals, leading to an average improvement of identification rates by 8.7-830.4% compared with existing approaches. Overall, PredInterval represents a robust and versatile tool for enhancing the clinical utility of PGS.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":29.0000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41588-025-02360-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02360-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Statistical construction of calibrated prediction intervals for polygenic score-based phenotype prediction.
Accurately quantifying uncertainty in predicted phenotypes from polygenic score (PGS)-based applications is essential for reliable clinical interpretation of PGS, supporting effective disease risk assessment and informed decision-making. Here, we present PredInterval, a nonparametric method for constructing well-calibrated prediction intervals. PredInterval is compatible with any PGS method, takes either individual-level data or summary statistics as input and relies on information from quantiles of phenotypic residuals through cross-validation to achieve well-calibrated coverage of true phenotypic values across diverse genetic architectures. We apply PredInterval to analyze 17 traits in real-data applications, where PredInterval not only represents the sole method achieving well-calibrated prediction coverage across traits, but it also offers a principled approach to identify high-risk individuals using prediction intervals, leading to an average improvement of identification rates by 8.7-830.4% compared with existing approaches. Overall, PredInterval represents a robust and versatile tool for enhancing the clinical utility of PGS.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution