单颗粒PMMA界面强压电式机电响应

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ignaas S.M. Jimidar, Artis Linarts, Kai Sotthewes, Jānis Lungevičs, Peter C. Sherrell, Andris Šutka
{"title":"单颗粒PMMA界面强压电式机电响应","authors":"Ignaas S.M. Jimidar, Artis Linarts, Kai Sotthewes, Jānis Lungevičs, Peter C. Sherrell, Andris Šutka","doi":"10.1016/j.nanoen.2025.111519","DOIUrl":null,"url":null,"abstract":"Energy harvesting devices, namely triboelectric nanogenerators (TENGs) and piezoelectric nanogenerators (PENGs), are rapidly garnering interest. As such, a great deal of research is devoted to developing electromechanically responsive materials, particularly flexible polymers. State-of-the-art materials are typically from toxic fluoropolymers, which need to be avoided due to environmental contamination risks. In this work, we investigate the electromechanical response of a granular-based electromechanical device. Close-packed monolayers comprising polymethyl methacrylate (PMMA) beads with diameters of 0.5 or 3 <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.855ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -498.8 603.5 798.9\" width=\"1.402ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\" mathvariant=\"normal\">μ</mi></math></span></span><script type=\"math/mml\"><math><mi mathvariant=\"normal\" is=\"true\">μ</mi></math></script></span>m are assembled using a solvent-free rubbing method. Subsequently, the ordered monolayers are brought into contact, while a force is cyclically applied in a quasi-static mode and during buzzer testing. The beads enable the production of ultra-thin polymer layers (with a combined thickness of only 3.5 <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.855ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -498.8 603.5 798.9\" width=\"1.402ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\" mathvariant=\"normal\">μ</mi></math></span></span><script type=\"math/mml\"><math><mi mathvariant=\"normal\" is=\"true\">μ</mi></math></script></span>m) with controlled morphology (Set by the bead size), which is highly challenging for other polymers. Our findings show that we achieve a <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;33&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 1328.3 997.6\" width=\"3.085ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-64\"></use></g></g><g is=\"true\" transform=\"translate(520,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">d</mi></mrow><mrow is=\"true\"><mtext is=\"true\">33</mtext></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">d</mi></mrow><mrow is=\"true\"><mtext is=\"true\">33</mtext></mrow></msub></math></script></span> value of 19 (in quasi-static mode) and 117 pC/N (buzzer test) for the granular-based PMMA electromechanical device, elucidating the great potential of such beads in mechanical energy harvesting devices, as it matches and outperforms most state-of-the-art polyvinylidene fluoride (PVDF) piezoelectric materials.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"27 1","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong piezoelectric-like electromechanical response from single granular PMMA interface\",\"authors\":\"Ignaas S.M. Jimidar, Artis Linarts, Kai Sotthewes, Jānis Lungevičs, Peter C. Sherrell, Andris Šutka\",\"doi\":\"10.1016/j.nanoen.2025.111519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy harvesting devices, namely triboelectric nanogenerators (TENGs) and piezoelectric nanogenerators (PENGs), are rapidly garnering interest. As such, a great deal of research is devoted to developing electromechanically responsive materials, particularly flexible polymers. State-of-the-art materials are typically from toxic fluoropolymers, which need to be avoided due to environmental contamination risks. In this work, we investigate the electromechanical response of a granular-based electromechanical device. Close-packed monolayers comprising polymethyl methacrylate (PMMA) beads with diameters of 0.5 or 3 <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.855ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.697ex;\\\" viewbox=\\\"0 -498.8 603.5 798.9\\\" width=\\\"1.402ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3BC\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">μ</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">μ</mi></math></script></span>m are assembled using a solvent-free rubbing method. Subsequently, the ordered monolayers are brought into contact, while a force is cyclically applied in a quasi-static mode and during buzzer testing. The beads enable the production of ultra-thin polymer layers (with a combined thickness of only 3.5 <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.855ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.697ex;\\\" viewbox=\\\"0 -498.8 603.5 798.9\\\" width=\\\"1.402ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3BC\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">μ</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">μ</mi></math></script></span>m) with controlled morphology (Set by the bead size), which is highly challenging for other polymers. Our findings show that we achieve a <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mtext is=\\\"true\\\"&gt;33&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -747.2 1328.3 997.6\\\" width=\\\"3.085ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-64\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(520,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-33\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">d</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">33</mtext></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">d</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">33</mtext></mrow></msub></math></script></span> value of 19 (in quasi-static mode) and 117 pC/N (buzzer test) for the granular-based PMMA electromechanical device, elucidating the great potential of such beads in mechanical energy harvesting devices, as it matches and outperforms most state-of-the-art polyvinylidene fluoride (PVDF) piezoelectric materials.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2025.111519\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.111519","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

能量收集装置,即摩擦纳米发电机(TENGs)和压电纳米发电机(peng),正迅速引起人们的兴趣。因此,大量的研究致力于开发机电响应材料,特别是柔性聚合物。最先进的材料通常来自有毒的含氟聚合物,由于环境污染风险,需要避免使用。在这项工作中,我们研究了基于颗粒的机电设备的机电响应。采用无溶剂摩擦法组装由直径为0.5或3 μμm的聚甲基丙烯酸甲酯(PMMA)微球组成的紧密排列的单层膜。随后,有序的单层接触,同时在准静态模式和蜂鸣器测试期间循环施加力。这些微珠能够生产出具有可控形貌(由微珠尺寸决定)的超薄聚合物层(总厚度仅为3.5 μμm),这对其他聚合物来说是极具挑战性的。我们的研究结果表明,我们实现了基于颗粒的PMMA机电设备的d33d33值为19(准静态模式)和117 pC/N(蜂鸣器测试),阐明了这种珠子在机械能收集设备中的巨大潜力,因为它匹配并优于大多数最先进的聚偏氟乙烯(PVDF)压电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strong piezoelectric-like electromechanical response from single granular PMMA interface

Strong piezoelectric-like electromechanical response from single granular PMMA interface
Energy harvesting devices, namely triboelectric nanogenerators (TENGs) and piezoelectric nanogenerators (PENGs), are rapidly garnering interest. As such, a great deal of research is devoted to developing electromechanically responsive materials, particularly flexible polymers. State-of-the-art materials are typically from toxic fluoropolymers, which need to be avoided due to environmental contamination risks. In this work, we investigate the electromechanical response of a granular-based electromechanical device. Close-packed monolayers comprising polymethyl methacrylate (PMMA) beads with diameters of 0.5 or 3 μm are assembled using a solvent-free rubbing method. Subsequently, the ordered monolayers are brought into contact, while a force is cyclically applied in a quasi-static mode and during buzzer testing. The beads enable the production of ultra-thin polymer layers (with a combined thickness of only 3.5 μm) with controlled morphology (Set by the bead size), which is highly challenging for other polymers. Our findings show that we achieve a d33 value of 19 (in quasi-static mode) and 117 pC/N (buzzer test) for the granular-based PMMA electromechanical device, elucidating the great potential of such beads in mechanical energy harvesting devices, as it matches and outperforms most state-of-the-art polyvinylidene fluoride (PVDF) piezoelectric materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信