Ashutosh Rana, Saptarshi Paul, Ashutosh Bhadouria, James H. Nguyen, John F. Koons, Chunge Li, Arya Das, Kingshuk Roy, Brian M. Tackett, Jeffrey E. Dick
{"title":"界面pH梯度抑制锌金属电池在大电流下的HER","authors":"Ashutosh Rana, Saptarshi Paul, Ashutosh Bhadouria, James H. Nguyen, John F. Koons, Chunge Li, Arya Das, Kingshuk Roy, Brian M. Tackett, Jeffrey E. Dick","doi":"10.1016/j.joule.2025.102167","DOIUrl":null,"url":null,"abstract":"Aqueous zinc metal batteries (AZMBs) are attractive alternatives to Li/Na systems due to their abundance, safety, low cost, and high capacity. Unfortunately, cycling efficiency is hindered by hydrogen evolution reaction (HER) at the anode. Paradoxically, higher current densities often yield improved Coulombic efficiency (CE), defying classical electrochemical expectations. Here, we resolve this paradox by revealing the role of interfacial pH gradients in zinc electrodeposition. Through advanced measurements, including electrochemical mass spectrometry and fluorescence microscopy, we show that steep pH gradients emerge at high currents and low capacities, fostering rapid formation of a uniform solid electrolyte interphase (SEI) that suppresses hydrogen evolution and enhances CE. This advantage diminishes at larger capacities or extreme currents due to convective instabilities. We present a unified framework, integrating pH gradients, SEI formation, HER suppression, zinc nucleation and growth, and convection, and we propose charge-discharge protocols that extend cycle life at practical and real capacities, advancing commercially relevant AZMBs.","PeriodicalId":343,"journal":{"name":"Joule","volume":"22 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial pH gradients suppress HER at high currents in zinc metal batteries\",\"authors\":\"Ashutosh Rana, Saptarshi Paul, Ashutosh Bhadouria, James H. Nguyen, John F. Koons, Chunge Li, Arya Das, Kingshuk Roy, Brian M. Tackett, Jeffrey E. Dick\",\"doi\":\"10.1016/j.joule.2025.102167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc metal batteries (AZMBs) are attractive alternatives to Li/Na systems due to their abundance, safety, low cost, and high capacity. Unfortunately, cycling efficiency is hindered by hydrogen evolution reaction (HER) at the anode. Paradoxically, higher current densities often yield improved Coulombic efficiency (CE), defying classical electrochemical expectations. Here, we resolve this paradox by revealing the role of interfacial pH gradients in zinc electrodeposition. Through advanced measurements, including electrochemical mass spectrometry and fluorescence microscopy, we show that steep pH gradients emerge at high currents and low capacities, fostering rapid formation of a uniform solid electrolyte interphase (SEI) that suppresses hydrogen evolution and enhances CE. This advantage diminishes at larger capacities or extreme currents due to convective instabilities. We present a unified framework, integrating pH gradients, SEI formation, HER suppression, zinc nucleation and growth, and convection, and we propose charge-discharge protocols that extend cycle life at practical and real capacities, advancing commercially relevant AZMBs.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.102167\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102167","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Interfacial pH gradients suppress HER at high currents in zinc metal batteries
Aqueous zinc metal batteries (AZMBs) are attractive alternatives to Li/Na systems due to their abundance, safety, low cost, and high capacity. Unfortunately, cycling efficiency is hindered by hydrogen evolution reaction (HER) at the anode. Paradoxically, higher current densities often yield improved Coulombic efficiency (CE), defying classical electrochemical expectations. Here, we resolve this paradox by revealing the role of interfacial pH gradients in zinc electrodeposition. Through advanced measurements, including electrochemical mass spectrometry and fluorescence microscopy, we show that steep pH gradients emerge at high currents and low capacities, fostering rapid formation of a uniform solid electrolyte interphase (SEI) that suppresses hydrogen evolution and enhances CE. This advantage diminishes at larger capacities or extreme currents due to convective instabilities. We present a unified framework, integrating pH gradients, SEI formation, HER suppression, zinc nucleation and growth, and convection, and we propose charge-discharge protocols that extend cycle life at practical and real capacities, advancing commercially relevant AZMBs.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.