{"title":"酶激发埃限流系统中定向C-C耦合对水中酚污染物的升级回收","authors":"Cuiwei Du, Wanyi Fu, Jie Li, Hui Xu, Bingcai Pan","doi":"10.1021/acs.est.5c08457","DOIUrl":null,"url":null,"abstract":"Selective transformation of phenol in wastewater into value-added products offers a sustainable strategy for simultaneous pollutant abatement and chemical resource recovery. However, conventional oxidation processes suffer from low product selectivity due to competing pathways, including ring-opening degradation, C–C/C–O coupling, and polymerization. Here, we develop an angstrom-confined flow-through system using laminar membrane nanochannels to enable spatiotemporally controlled oxidation and regioselective C–C coupling. The 6.0 Å interlayer spacing of ZnFe-layered double hydroxide enforces stereoselective alignment of phenoxy radicals, while flow modulation precisely regulates the reaction progression. This enzyme-inspired dual-control strategy achieves 84% C–C selectivity at 50% phenol conversion and suppresses parasitic pathways (C–O coupling, overoxidation) that are endemic to traditional batch systems. Mechanistic studies and density functional theory (DFT) calculations reveal that nanoconfinement thermodynamically stabilizes para-oriented radicals, steering barrierless C–C coupling. Integrated with selective resin adsorption for biphenol harvest and phenol recycling, up to 90% cumulative product yield is achieved. This work establishes a low-carbon pollutant-to-product paradigm for resource recovery from contaminated waters.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"120 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling of Aqueous Phenol Pollutants via Directed C–C Coupling in an Enzyme-Inspired Angstrom-Confined Flow-Through System\",\"authors\":\"Cuiwei Du, Wanyi Fu, Jie Li, Hui Xu, Bingcai Pan\",\"doi\":\"10.1021/acs.est.5c08457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective transformation of phenol in wastewater into value-added products offers a sustainable strategy for simultaneous pollutant abatement and chemical resource recovery. However, conventional oxidation processes suffer from low product selectivity due to competing pathways, including ring-opening degradation, C–C/C–O coupling, and polymerization. Here, we develop an angstrom-confined flow-through system using laminar membrane nanochannels to enable spatiotemporally controlled oxidation and regioselective C–C coupling. The 6.0 Å interlayer spacing of ZnFe-layered double hydroxide enforces stereoselective alignment of phenoxy radicals, while flow modulation precisely regulates the reaction progression. This enzyme-inspired dual-control strategy achieves 84% C–C selectivity at 50% phenol conversion and suppresses parasitic pathways (C–O coupling, overoxidation) that are endemic to traditional batch systems. Mechanistic studies and density functional theory (DFT) calculations reveal that nanoconfinement thermodynamically stabilizes para-oriented radicals, steering barrierless C–C coupling. Integrated with selective resin adsorption for biphenol harvest and phenol recycling, up to 90% cumulative product yield is achieved. This work establishes a low-carbon pollutant-to-product paradigm for resource recovery from contaminated waters.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.5c08457\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c08457","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Upcycling of Aqueous Phenol Pollutants via Directed C–C Coupling in an Enzyme-Inspired Angstrom-Confined Flow-Through System
Selective transformation of phenol in wastewater into value-added products offers a sustainable strategy for simultaneous pollutant abatement and chemical resource recovery. However, conventional oxidation processes suffer from low product selectivity due to competing pathways, including ring-opening degradation, C–C/C–O coupling, and polymerization. Here, we develop an angstrom-confined flow-through system using laminar membrane nanochannels to enable spatiotemporally controlled oxidation and regioselective C–C coupling. The 6.0 Å interlayer spacing of ZnFe-layered double hydroxide enforces stereoselective alignment of phenoxy radicals, while flow modulation precisely regulates the reaction progression. This enzyme-inspired dual-control strategy achieves 84% C–C selectivity at 50% phenol conversion and suppresses parasitic pathways (C–O coupling, overoxidation) that are endemic to traditional batch systems. Mechanistic studies and density functional theory (DFT) calculations reveal that nanoconfinement thermodynamically stabilizes para-oriented radicals, steering barrierless C–C coupling. Integrated with selective resin adsorption for biphenol harvest and phenol recycling, up to 90% cumulative product yield is achieved. This work establishes a low-carbon pollutant-to-product paradigm for resource recovery from contaminated waters.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.