Cu/碳纤维/Mo复合材料热管理低热阻碳化物非均相界面的构建

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yanlin Huang, Zhaohan Jiang, Wanru Zhao, Xuting Niu, Yu Yuan, Hanyu Cai, Xiangyu Yu, Shen Gong
{"title":"Cu/碳纤维/Mo复合材料热管理低热阻碳化物非均相界面的构建","authors":"Yanlin Huang, Zhaohan Jiang, Wanru Zhao, Xuting Niu, Yu Yuan, Hanyu Cai, Xiangyu Yu, Shen Gong","doi":"10.1016/j.cej.2025.169541","DOIUrl":null,"url":null,"abstract":"With the integration and miniaturization of electronic components, an increasing demand is emerging for isotropic excellent thermal properties of thermal management materials. In this paper, based on data-driven filtering of dual-interface modifying elements Cr and Zr, high thermal conductivity and low coefficient of thermal expansion Cu/carbon fiber/Mo composites are successfully reaped via turbulence-shock homogeneous casting. Cu/C interfacial bonding is enhanced by the Cu/(CrZrMo)C/Cr<sub>3</sub>C<sub>2</sub>/C heterogeneous interface with approximately 80-nm Cr<sub>3</sub>C<sub>2</sub> layer and 250-nm (CrZrMo)C layer. Cu/Mo interfacial bonding is simultaneously improved by forming a multi-element diffusion layer with the enrichment of elements Cr and Zr. Interfacial modification provides favorable conditions for uniform three-dimensional interpenetrated carbon fiber networks and dispersed Mo particles within Cu matrix. Cu-Cr-Zr/30carbon fiber/10Mo composite possesses optimal performance: the average thermal conductivity reaches 454.1 W m<sup>−1</sup> K<sup>−1</sup> and coefficient of thermal expansion is 12.2 × 10<sup>−6</sup> K<sup>−1</sup>, respectively. Modeling results indicate that the Cu/(CrZrMo)C/Cr<sub>3</sub>C<sub>2</sub>/C heterogeneous interface alleviates phonon scattering at the interface, thereby significantly mitigating the interfacial thermal resistance. Cu/carbon fiber/Mo composite designed in this study, exhibiting isotropic behavior, holds promise as a next-generation thermal management material for heat dissipation engineering.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"119 1","pages":""},"PeriodicalIF":13.2000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a low-thermal-resistance carbides heterogeneous interface in Cu/carbon fiber/Mo composites for thermal management application\",\"authors\":\"Yanlin Huang, Zhaohan Jiang, Wanru Zhao, Xuting Niu, Yu Yuan, Hanyu Cai, Xiangyu Yu, Shen Gong\",\"doi\":\"10.1016/j.cej.2025.169541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the integration and miniaturization of electronic components, an increasing demand is emerging for isotropic excellent thermal properties of thermal management materials. In this paper, based on data-driven filtering of dual-interface modifying elements Cr and Zr, high thermal conductivity and low coefficient of thermal expansion Cu/carbon fiber/Mo composites are successfully reaped via turbulence-shock homogeneous casting. Cu/C interfacial bonding is enhanced by the Cu/(CrZrMo)C/Cr<sub>3</sub>C<sub>2</sub>/C heterogeneous interface with approximately 80-nm Cr<sub>3</sub>C<sub>2</sub> layer and 250-nm (CrZrMo)C layer. Cu/Mo interfacial bonding is simultaneously improved by forming a multi-element diffusion layer with the enrichment of elements Cr and Zr. Interfacial modification provides favorable conditions for uniform three-dimensional interpenetrated carbon fiber networks and dispersed Mo particles within Cu matrix. Cu-Cr-Zr/30carbon fiber/10Mo composite possesses optimal performance: the average thermal conductivity reaches 454.1 W m<sup>−1</sup> K<sup>−1</sup> and coefficient of thermal expansion is 12.2 × 10<sup>−6</sup> K<sup>−1</sup>, respectively. Modeling results indicate that the Cu/(CrZrMo)C/Cr<sub>3</sub>C<sub>2</sub>/C heterogeneous interface alleviates phonon scattering at the interface, thereby significantly mitigating the interfacial thermal resistance. Cu/carbon fiber/Mo composite designed in this study, exhibiting isotropic behavior, holds promise as a next-generation thermal management material for heat dissipation engineering.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2025.169541\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.169541","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着电子元件的集成化和小型化,对热管理材料各向同性优异热性能的需求日益增加。本文基于双界面改性元素Cr和Zr的数据驱动滤波,通过紊流冲击均匀铸造成功获得了导热系数高、热膨胀系数低的Cu/碳纤维/Mo复合材料。Cu/(CrZrMo)C/Cr3C2/C的非均相界面层约为80 nm Cr3C2层和250 nm (CrZrMo)C层,增强了Cu/C界面的结合。随着Cr和Zr元素的富集,形成多元素扩散层,Cu/Mo界面结合得到改善。界面改性为形成均匀的三维碳纤维互穿网络和分散在Cu基体中的Mo颗粒提供了有利条件。Cu-Cr-Zr/30碳纤维/10Mo复合材料性能最佳,平均导热系数达到454.1 W m−1 K−1,热膨胀系数为12.2 × 10−6 K−1。模拟结果表明,Cu/(CrZrMo)C/Cr3C2/C非均相界面减轻了界面声子散射,从而显著降低了界面热阻。本研究设计的Cu/碳纤维/Mo复合材料具有各向同性,有望成为散热工程的下一代热管理材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a low-thermal-resistance carbides heterogeneous interface in Cu/carbon fiber/Mo composites for thermal management application
With the integration and miniaturization of electronic components, an increasing demand is emerging for isotropic excellent thermal properties of thermal management materials. In this paper, based on data-driven filtering of dual-interface modifying elements Cr and Zr, high thermal conductivity and low coefficient of thermal expansion Cu/carbon fiber/Mo composites are successfully reaped via turbulence-shock homogeneous casting. Cu/C interfacial bonding is enhanced by the Cu/(CrZrMo)C/Cr3C2/C heterogeneous interface with approximately 80-nm Cr3C2 layer and 250-nm (CrZrMo)C layer. Cu/Mo interfacial bonding is simultaneously improved by forming a multi-element diffusion layer with the enrichment of elements Cr and Zr. Interfacial modification provides favorable conditions for uniform three-dimensional interpenetrated carbon fiber networks and dispersed Mo particles within Cu matrix. Cu-Cr-Zr/30carbon fiber/10Mo composite possesses optimal performance: the average thermal conductivity reaches 454.1 W m−1 K−1 and coefficient of thermal expansion is 12.2 × 10−6 K−1, respectively. Modeling results indicate that the Cu/(CrZrMo)C/Cr3C2/C heterogeneous interface alleviates phonon scattering at the interface, thereby significantly mitigating the interfacial thermal resistance. Cu/carbon fiber/Mo composite designed in this study, exhibiting isotropic behavior, holds promise as a next-generation thermal management material for heat dissipation engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信