D. Bafia, B. Abdisatarov, R. Pilipenko, Y. Lu, G. Eremeev, A. Romanenko, A. Grassellino
{"title":"mK温度下铌谐振器中捕获磁涡损失的量化","authors":"D. Bafia, B. Abdisatarov, R. Pilipenko, Y. Lu, G. Eremeev, A. Romanenko, A. Grassellino","doi":"10.1063/5.0282159","DOIUrl":null,"url":null,"abstract":"Trapped magnetic vortices in niobium introduce microwave losses that degrade the performance of superconducting resonators. While such losses have been extensively studied above 1 K, we report here their direct quantification in the millikelvin and low-photon regime relevant to quantum devices. Using a high-quality factor 3D niobium cavity cooled through its superconducting transition in controlled magnetic fields, we isolate vortex-induced losses and find the resistive component of the sensitivity to trapped flux S to be approximately 2 n Ω/mG at 10 mK and 6 GHz. The decay rate is initially dominated by two-level system (TLS) losses from the native niobium pentoxide, with vortex-induced degradation of T1 occurring above Btrap∼ 50 mG. In the absence of the oxide, even 10 mG of trapped flux limits performance, Q0∼ 1010, or T1∼ 350 ms, underscoring the need for stringent magnetic shielding. The resistive sensitivity, S, decreases with temperature and remains largely field-independent, whereas the reactive component, S′, exhibits a maximum near 0.8 K. These behaviors are well modeled within the Coffey–Clem framework in the zero-creep limit, under the assumption that vortex pinning is enhanced by thermally activated processes. Our results suggest that niobium-based transmon qubits can tolerate vortex-induced dissipation at trapped field levels up to several hundred mG, but achieving long coherence times still requires careful magnetic shielding to suppress lower-field losses from other mechanisms.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"18 1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying trapped magnetic vortex losses in niobium resonators at mK temperatures\",\"authors\":\"D. Bafia, B. Abdisatarov, R. Pilipenko, Y. Lu, G. Eremeev, A. Romanenko, A. Grassellino\",\"doi\":\"10.1063/5.0282159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trapped magnetic vortices in niobium introduce microwave losses that degrade the performance of superconducting resonators. While such losses have been extensively studied above 1 K, we report here their direct quantification in the millikelvin and low-photon regime relevant to quantum devices. Using a high-quality factor 3D niobium cavity cooled through its superconducting transition in controlled magnetic fields, we isolate vortex-induced losses and find the resistive component of the sensitivity to trapped flux S to be approximately 2 n Ω/mG at 10 mK and 6 GHz. The decay rate is initially dominated by two-level system (TLS) losses from the native niobium pentoxide, with vortex-induced degradation of T1 occurring above Btrap∼ 50 mG. In the absence of the oxide, even 10 mG of trapped flux limits performance, Q0∼ 1010, or T1∼ 350 ms, underscoring the need for stringent magnetic shielding. The resistive sensitivity, S, decreases with temperature and remains largely field-independent, whereas the reactive component, S′, exhibits a maximum near 0.8 K. These behaviors are well modeled within the Coffey–Clem framework in the zero-creep limit, under the assumption that vortex pinning is enhanced by thermally activated processes. Our results suggest that niobium-based transmon qubits can tolerate vortex-induced dissipation at trapped field levels up to several hundred mG, but achieving long coherence times still requires careful magnetic shielding to suppress lower-field losses from other mechanisms.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"18 1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0282159\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0282159","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Quantifying trapped magnetic vortex losses in niobium resonators at mK temperatures
Trapped magnetic vortices in niobium introduce microwave losses that degrade the performance of superconducting resonators. While such losses have been extensively studied above 1 K, we report here their direct quantification in the millikelvin and low-photon regime relevant to quantum devices. Using a high-quality factor 3D niobium cavity cooled through its superconducting transition in controlled magnetic fields, we isolate vortex-induced losses and find the resistive component of the sensitivity to trapped flux S to be approximately 2 n Ω/mG at 10 mK and 6 GHz. The decay rate is initially dominated by two-level system (TLS) losses from the native niobium pentoxide, with vortex-induced degradation of T1 occurring above Btrap∼ 50 mG. In the absence of the oxide, even 10 mG of trapped flux limits performance, Q0∼ 1010, or T1∼ 350 ms, underscoring the need for stringent magnetic shielding. The resistive sensitivity, S, decreases with temperature and remains largely field-independent, whereas the reactive component, S′, exhibits a maximum near 0.8 K. These behaviors are well modeled within the Coffey–Clem framework in the zero-creep limit, under the assumption that vortex pinning is enhanced by thermally activated processes. Our results suggest that niobium-based transmon qubits can tolerate vortex-induced dissipation at trapped field levels up to several hundred mG, but achieving long coherence times still requires careful magnetic shielding to suppress lower-field losses from other mechanisms.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.