低表面亮度超薄星系的演化:暗物质晕和棒状形成对星系盘厚度的作用

K. Aditya and Arunima Banerjee
{"title":"低表面亮度超薄星系的演化:暗物质晕和棒状形成对星系盘厚度的作用","authors":"K. Aditya and Arunima Banerjee","doi":"10.3847/1538-4357/ae0991","DOIUrl":null,"url":null,"abstract":"We investigate how stellar disks sustain their ultrathin structure throughout their evolution. We follow the evolution of ultrathin stellar disks with varying dark matter (DM) halo concentration (c) using collisionless N-body simulations with AREPO. We test models embedded in steep (c = 12), shallow (c = 2), and intermediate (c = 6) DM concentrations. Our models match the observed structural properties of the stellar disk in the low surface brightness (LSB) ultrathin galaxy FGC 2366, specifically its surface brightness, disk scalelength, and vertical thinness (hz/RD = 0.1), while excluding gas, allowing us to isolate the effects of DM. The internal disk heating mechanism driven by bars is suppressed in the LSB ultrathin stellar disks regardless of the DM concentration. The ratio of disk thickness (hz) to scalelength (RD) remains constant at ≤0.1 throughout their evolution. To clearly establish that the LSB nature of stellar disks is the key to preventing disk thickening, we construct the initial conditions by increasing the stellar mass fraction from fs ∼ 0.01 to 0.02 and 0.04, respectively, while keeping the total mass equal to 1011M⊙ and hz/RD ≤ 0.1 unchanged. We find that models with a higher stellar mass fraction embedded in a shallow DM potential (c = 2) form bars and undergo significant disk thickening (hz/RD ≫ 0.1) concurrent with the bar growth. We conclude that if the LSB disks are thin to begin with, they remain so throughout their evolution in isolation, regardless of the concentration of the DM halo.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Low Surface Brightness Ultrathin Galaxies: The Role of Dark Matter Halo and Bar Formation on Disk Thickness\",\"authors\":\"K. Aditya and Arunima Banerjee\",\"doi\":\"10.3847/1538-4357/ae0991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate how stellar disks sustain their ultrathin structure throughout their evolution. We follow the evolution of ultrathin stellar disks with varying dark matter (DM) halo concentration (c) using collisionless N-body simulations with AREPO. We test models embedded in steep (c = 12), shallow (c = 2), and intermediate (c = 6) DM concentrations. Our models match the observed structural properties of the stellar disk in the low surface brightness (LSB) ultrathin galaxy FGC 2366, specifically its surface brightness, disk scalelength, and vertical thinness (hz/RD = 0.1), while excluding gas, allowing us to isolate the effects of DM. The internal disk heating mechanism driven by bars is suppressed in the LSB ultrathin stellar disks regardless of the DM concentration. The ratio of disk thickness (hz) to scalelength (RD) remains constant at ≤0.1 throughout their evolution. To clearly establish that the LSB nature of stellar disks is the key to preventing disk thickening, we construct the initial conditions by increasing the stellar mass fraction from fs ∼ 0.01 to 0.02 and 0.04, respectively, while keeping the total mass equal to 1011M⊙ and hz/RD ≤ 0.1 unchanged. We find that models with a higher stellar mass fraction embedded in a shallow DM potential (c = 2) form bars and undergo significant disk thickening (hz/RD ≫ 0.1) concurrent with the bar growth. We conclude that if the LSB disks are thin to begin with, they remain so throughout their evolution in isolation, regardless of the concentration of the DM halo.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ae0991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ae0991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究恒星盘在其演化过程中如何维持其超薄结构。我们使用AREPO的无碰撞n体模拟来跟踪具有不同暗物质(DM)晕浓度(c)的超薄恒星盘的演化。我们测试了嵌入陡(c = 12)、浅(c = 2)和中间(c = 6) DM浓度的模型。我们的模型与低表面亮度(LSB)超薄星系FGC 2366中观测到的星盘结构特性相匹配,特别是其表面亮度、盘尺度长度和垂直厚度(hz/RD = 0.1),同时排除了气体,使我们能够隔离DM的影响。在LSB超薄星系中,无论DM浓度如何,棒驱动的内部盘加热机制都被抑制。磁盘厚度(hz)与尺度长度(RD)的比值在整个演化过程中保持不变,≤0.1。为了明确恒星盘的LSB性质是防止磁盘增厚的关键,我们构建了初始条件,将恒星质量分数从fs ~ 0.01分别增加到0.02和0.04,同时保持总质量等于1011M⊙和hz/RD≤0.1不变。我们发现,嵌入在浅DM电位(c = 2)的较高恒星质量分数的模型形成棒状结构,并且在棒状结构增长的同时发生显著的圆盘增厚(hz/RD > 0.1)。我们的结论是,如果LSB盘一开始就很薄,那么不管DM光晕的浓度如何,它们在整个孤立的演化过程中都会保持薄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Low Surface Brightness Ultrathin Galaxies: The Role of Dark Matter Halo and Bar Formation on Disk Thickness
We investigate how stellar disks sustain their ultrathin structure throughout their evolution. We follow the evolution of ultrathin stellar disks with varying dark matter (DM) halo concentration (c) using collisionless N-body simulations with AREPO. We test models embedded in steep (c = 12), shallow (c = 2), and intermediate (c = 6) DM concentrations. Our models match the observed structural properties of the stellar disk in the low surface brightness (LSB) ultrathin galaxy FGC 2366, specifically its surface brightness, disk scalelength, and vertical thinness (hz/RD = 0.1), while excluding gas, allowing us to isolate the effects of DM. The internal disk heating mechanism driven by bars is suppressed in the LSB ultrathin stellar disks regardless of the DM concentration. The ratio of disk thickness (hz) to scalelength (RD) remains constant at ≤0.1 throughout their evolution. To clearly establish that the LSB nature of stellar disks is the key to preventing disk thickening, we construct the initial conditions by increasing the stellar mass fraction from fs ∼ 0.01 to 0.02 and 0.04, respectively, while keeping the total mass equal to 1011M⊙ and hz/RD ≤ 0.1 unchanged. We find that models with a higher stellar mass fraction embedded in a shallow DM potential (c = 2) form bars and undergo significant disk thickening (hz/RD ≫ 0.1) concurrent with the bar growth. We conclude that if the LSB disks are thin to begin with, they remain so throughout their evolution in isolation, regardless of the concentration of the DM halo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信