用于高速飞行器电磁波吸收的柔性Graphene@Silica织物超表面

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guang Cui, Zhe Peng, Zhidong Liu, Haina Ci, Ruojuan Liu, Maoyuan Li, Huihui Wang, Zhongfan Liu
{"title":"用于高速飞行器电磁波吸收的柔性Graphene@Silica织物超表面","authors":"Guang Cui, Zhe Peng, Zhidong Liu, Haina Ci, Ruojuan Liu, Maoyuan Li, Huihui Wang, Zhongfan Liu","doi":"10.1002/adma.202516254","DOIUrl":null,"url":null,"abstract":"Modern high‐speed aircraft require materials that can absorb electromagnetic waves (EMWs) while remaining lightweight, flexible, and resistant to extreme heat flux. Although graphene@silica fabric (G@SF) is a promising metasurface in this regard, its EMW dissipation capacity is limited by its uniform sheet resistance distribution, which leads to mismatched interfacial wave impedance. In this study, a subtractive laser “erasing” technique is applied to G@SF grown via chemical vapor deposition to develop a scalable, flexible, ultrathin (0.1 mm), and thermally robust (up to 1000 °C) metasurface with tunable impedance for aerospace EMW absorption. This metasurface is directly integrated onto the aircraft thermal‐insulation layer to obtain an integrated absorber that minimizes radar reflection (down to −42 dB) without adding significant weight or altering aircraft structure. The all‐inorganic design ensures excellent durability under high temperatures, high‐speed airflow scouring, and mechanical stress, making it ideal for aerospace applications. The proposed method is a promising approach for fabricating next‐generation EMW‐absorbing materials that combine performance, resilience, and manufacturability.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"119 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Graphene@Silica Fabric Metasurface for Electromagnetic Wave Absorption on High‐Speed Aircraft\",\"authors\":\"Guang Cui, Zhe Peng, Zhidong Liu, Haina Ci, Ruojuan Liu, Maoyuan Li, Huihui Wang, Zhongfan Liu\",\"doi\":\"10.1002/adma.202516254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern high‐speed aircraft require materials that can absorb electromagnetic waves (EMWs) while remaining lightweight, flexible, and resistant to extreme heat flux. Although graphene@silica fabric (G@SF) is a promising metasurface in this regard, its EMW dissipation capacity is limited by its uniform sheet resistance distribution, which leads to mismatched interfacial wave impedance. In this study, a subtractive laser “erasing” technique is applied to G@SF grown via chemical vapor deposition to develop a scalable, flexible, ultrathin (0.1 mm), and thermally robust (up to 1000 °C) metasurface with tunable impedance for aerospace EMW absorption. This metasurface is directly integrated onto the aircraft thermal‐insulation layer to obtain an integrated absorber that minimizes radar reflection (down to −42 dB) without adding significant weight or altering aircraft structure. The all‐inorganic design ensures excellent durability under high temperatures, high‐speed airflow scouring, and mechanical stress, making it ideal for aerospace applications. The proposed method is a promising approach for fabricating next‐generation EMW‐absorbing materials that combine performance, resilience, and manufacturability.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202516254\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202516254","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

现代高速飞机需要能够吸收电磁波(emw)的材料,同时保持轻便、灵活和耐极端热通量。虽然graphene@silica织物(G@SF)在这方面是一个很有前途的超表面,但它的EMW耗散能力受到其均匀的片电阻分布的限制,导致界面波阻抗不匹配。在这项研究中,通过化学气相沉积将一种减法激光“擦除”技术应用于G@SF,以开发一种可伸缩、灵活、超薄(0.1 mm)、热坚固(高达1000°C)的超表面,其阻抗可调,用于航空航天EMW吸收。这种超表面直接集成到飞机的隔热层上,以获得一个集成的吸收器,在不增加显著重量或改变飞机结构的情况下,最大限度地减少雷达反射(低至- 42 dB)。全无机设计确保了在高温,高速气流冲刷和机械应力下的优异耐久性,使其成为航空航天应用的理想选择。所提出的方法是一种很有前途的方法,用于制造结合性能,弹性和可制造性的下一代EMW吸收材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible Graphene@Silica Fabric Metasurface for Electromagnetic Wave Absorption on High‐Speed Aircraft
Modern high‐speed aircraft require materials that can absorb electromagnetic waves (EMWs) while remaining lightweight, flexible, and resistant to extreme heat flux. Although graphene@silica fabric (G@SF) is a promising metasurface in this regard, its EMW dissipation capacity is limited by its uniform sheet resistance distribution, which leads to mismatched interfacial wave impedance. In this study, a subtractive laser “erasing” technique is applied to G@SF grown via chemical vapor deposition to develop a scalable, flexible, ultrathin (0.1 mm), and thermally robust (up to 1000 °C) metasurface with tunable impedance for aerospace EMW absorption. This metasurface is directly integrated onto the aircraft thermal‐insulation layer to obtain an integrated absorber that minimizes radar reflection (down to −42 dB) without adding significant weight or altering aircraft structure. The all‐inorganic design ensures excellent durability under high temperatures, high‐speed airflow scouring, and mechanical stress, making it ideal for aerospace applications. The proposed method is a promising approach for fabricating next‐generation EMW‐absorbing materials that combine performance, resilience, and manufacturability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信